Identification of an iron-sulfur cluster that modulates the enzymatic activity in NarE, a Neisseria meningitidis ADP-ribosyltransferase

Author(s): Del Vecchio M,Pogni R, Baratto MC, Nobbs A, Rappuoli R, et al.

Abstract

In prokaryotes, mono-ADP-ribose transfer enzymes represent a family of exotoxins that display activity in a variety of bacterial pathogens responsible for causing disease in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report here that NarE, a putative ADP-ribosylating toxin previously identified from Neisseria meningitidis, which shares structural homologies with Escherichia coli heat labile enterotoxin and toxin from Vibrio cholerae, possesses an iron-sulfur center. The recombinant protein was expressed in E. coli, and when purified at high concentration, NarE is a distinctive golden brown in color. Evidence from UV-visible spectrophotometry and EPR spectroscopy revealed characteristics consistent of an iron-binding protein. The presence of iron was determined by colorimetric method and by an atomic absorption spectrophotometer. To identify the amino acids involved in binding iron, a combination of site-directed mutagenesis and UV-visible and enzymatic assays were performed. All four cysteine residues were individually replaced by serine. Substitution of Cys(67) and Cys(128) into serine caused a drastic reduction in the E(420)/E(280) ratio, suggesting that these two residues are essential for the formation of a stable coordination. This modification led to a consistent loss in ADP-ribosyltransferase activity, while decrease in NAD-glycohydrolase activity was less dramatic in these mutants, indicating that the correct assembly of the iron-binding site is essential for transferase but not hydrolase activity. This is the first observation suggesting that a member of the ADP-ribosyltransferase family contains an Fe-S cluster implicated in catalysis. This observation may unravel novel functions exerted by this class of enzymes.

Similar Articles

Bacterial meningitis in the United States in 1995

Author(s): Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, et al.

Arginine-specific mono ADP-ribosylation in vitro of antimicrobial peptides by ADP-ribosylating toxins

Author(s): Castagnini M,Picchianti M, Talluri E, Biagini M, Del Vecchio M, et al.

In silico identification of novel bacterial ADP-ribosyltransferases

Author(s): Masignani V,Balducci E, Serruto D, Veggi D, Aricò B, et al.

NarE: a novel ADP-ribosyltransferase from Neisseria meningitidis

Author(s): Masignani V,Balducci E, Di Marcello F, Savino S, Serruto D, et al.

Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities

Author(s): Picchianti M, Del Vecchio M, Di Marcello F, Biagini M, Veggi D, et al.

A fluorescent analog of nicotinamide adenine dinucleotide

Author(s): Barrio JR, Secrist JA 3rd, Leonard NJ

The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse

Author(s): Glowacki G,Braren R, Firner K, Nissen M, Kühl M, et al.

Activation of choleragen by thiol: protein disulfideoxidoreductase

Author(s): Moss J, Stanley SJ, Morin JE, Dixon JE

Iron transport systems in Neisseria meningitidis

Author(s): Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I