Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning

Author(s): Blaxton TA, Zeffiro TA, Gabrieli JD, Bookheimer SY, Carrillo MC, et al.

Abstract

Regional cerebral blood flow (rCBF) was measured using positron emission tomography during eyeblink conditioning in young adults. Subjects were scanned in three experimental conditions: delay conditioning, in which binaural tones preceded air puffs to the right eye by 400 msec; pseudoconditioning, in which presentations of tone and air puff stimuli were not correlated in time; and fixation rest, which served as a baseline control. Compared with fixation, pseudoconditioning produced rCBF increases in frontal and temporal cortex, basal ganglia, left hippocampal formation, and pons. Learning-specific activations were observed in conditioning as compared with pseudoconditioning in bilateral frontal cortex, left thalamus, right medial hippocampal formation, left lingual gyrus, pons, and bilateral cerebellum; decreases in rCBF were observed for bilateral temporal cortex, and in the right hemisphere in putamen, cerebellum, and the lateral aspect of hippocampal formation. Blood flow increased as the level of learning increased in the left hemisphere in caudate, hippocampal formation, fusiform gyrus, and cerebellum, and in right temporal cortex and pons. In contrast, activation in left frontal cortex decreased as learning increased. These functional imaging results implicate many of the same structures identified by previous lesion and recording studies of eyeblink conditioning in animals and humans and suggest that the same brain regions in animals and humans mediate multiple forms of associative learning that give meaning to a previously neutral stimulus.

Similar Articles

Trace eyeblink conditioning in human subjects with cerebellar lesions

Author(s): Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, et al.

A functional anatomical study of associative learning in humans

Author(s): Molchan SE, Sunderland T, McIntosh AR, Herscovitch P, Schreurs BG

Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats

Author(s): Gruart A , Guillazo-Blanch G, Fernandez-Mas R, Jimenez-Diaz L, Delgado-Garcia JM

Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice

Author(s): Park JS, Onodera T, Nishimura S, Thompson RF, Itohara S

Cerebellar cortical inhibition and classical eyeblink conditioning

Author(s): Bao S, Chen L, Kim JJ, Thompson RF

Synapse formation is associated with memory storage in the cerebellum

Author(s): Kleim JA, Freeman JH Jr, Bruneau R, Nolan BC, Cooper NR, et al.

Parallel neural networks for learning sequential procedures

Author(s): Hikosaka O, Nakahara H, Rand MK, Lu X, Nakamura K, et al.

Cortical control of motor sequences

Author(s): Ashe J, Lungu OV, Basford, AT, Lu X

The cerebellar cognitive affective syndrome

Author(s): Schmahmann JD, Sherman JC.

Differential involvement of the cerebellum in biological and coherent motion perception

Author(s): Jokisch D, Troje NF, Koch B, Schwarz M, Daum I

Depth perception in cerebellar and basal ganglia disease

Author(s): Maschke M, Gomez CM, Tuite PJ, Pickett K, Konczak J

Cerebellar damage produces selective deficits in verbal working memory

Author(s): Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, et al.

Cognitive functions in patients with MR-defined chronic focal cerebellar lesions

Author(s): Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, et al.