Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report

Author(s): Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, et al.

Abstract

As part of an autopsy research project, the brains of four autistic subjects were examined and compared with those of three comparison subjects without CNS pathology and one with phenytoin toxicity. The cerebellum was selected for initial investigation because pathognomonic symptoms and neurophysiological measures suggest that pathology may exist in the cerebellar-vestibular axis in certain patients. Total Purkinje cell counts were significantly lower in the cerebellar hemisphere and vermis of each autistic subject than in the comparison subjects.

Similar Articles

Trace eyeblink conditioning in human subjects with cerebellar lesions

Author(s): Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, et al.

Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning

Author(s): Blaxton TA, Zeffiro TA, Gabrieli JD, Bookheimer SY, Carrillo MC, et al.

A functional anatomical study of associative learning in humans

Author(s): Molchan SE, Sunderland T, McIntosh AR, Herscovitch P, Schreurs BG

Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats

Author(s): Gruart A , Guillazo-Blanch G, Fernandez-Mas R, Jimenez-Diaz L, Delgado-Garcia JM

Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice

Author(s): Park JS, Onodera T, Nishimura S, Thompson RF, Itohara S

Cerebellar cortical inhibition and classical eyeblink conditioning

Author(s): Bao S, Chen L, Kim JJ, Thompson RF

Synapse formation is associated with memory storage in the cerebellum

Author(s): Kleim JA, Freeman JH Jr, Bruneau R, Nolan BC, Cooper NR, et al.

Parallel neural networks for learning sequential procedures

Author(s): Hikosaka O, Nakahara H, Rand MK, Lu X, Nakamura K, et al.

Cortical control of motor sequences

Author(s): Ashe J, Lungu OV, Basford, AT, Lu X

The cerebellar cognitive affective syndrome

Author(s): Schmahmann JD, Sherman JC.

Differential involvement of the cerebellum in biological and coherent motion perception

Author(s): Jokisch D, Troje NF, Koch B, Schwarz M, Daum I

Depth perception in cerebellar and basal ganglia disease

Author(s): Maschke M, Gomez CM, Tuite PJ, Pickett K, Konczak J

Cerebellar damage produces selective deficits in verbal working memory

Author(s): Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, et al.

Cognitive functions in patients with MR-defined chronic focal cerebellar lesions

Author(s): Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, et al.