Motion perception deficits from midline cerebellar lesions in human

Author(s): Nawrot M, Rizzo M

Abstract

Although visual motion processing is commonly thought to be mediated solely by visual cortical areas, this human lesion study suggests that the cerebellum also has a role. We found motion direction discrimination deficits in a group of patients with acute midline cerebellar lesions. Unlike normals and patients with hemispheric cerebellar lesions, these patients with midline lesions were unable to discern a global motion vector in a local stochastic motion display. This resembles the perceptual defect reported following cortical area MT lesions in primates. This motion perception deficit may result from damage to a cerebellar mechanism involved in perceptual stabilization. Disruption of this comparator mechanism is sufficient to produce a severe motion perception deficit even though cortical visual processing mechanisms are still intact.

Similar Articles

Trace eyeblink conditioning in human subjects with cerebellar lesions

Author(s): Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, et al.

Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning

Author(s): Blaxton TA, Zeffiro TA, Gabrieli JD, Bookheimer SY, Carrillo MC, et al.

A functional anatomical study of associative learning in humans

Author(s): Molchan SE, Sunderland T, McIntosh AR, Herscovitch P, Schreurs BG

Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats

Author(s): Gruart A , Guillazo-Blanch G, Fernandez-Mas R, Jimenez-Diaz L, Delgado-Garcia JM

Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice

Author(s): Park JS, Onodera T, Nishimura S, Thompson RF, Itohara S

Cerebellar cortical inhibition and classical eyeblink conditioning

Author(s): Bao S, Chen L, Kim JJ, Thompson RF

Synapse formation is associated with memory storage in the cerebellum

Author(s): Kleim JA, Freeman JH Jr, Bruneau R, Nolan BC, Cooper NR, et al.

Parallel neural networks for learning sequential procedures

Author(s): Hikosaka O, Nakahara H, Rand MK, Lu X, Nakamura K, et al.

Cortical control of motor sequences

Author(s): Ashe J, Lungu OV, Basford, AT, Lu X

The cerebellar cognitive affective syndrome

Author(s): Schmahmann JD, Sherman JC.

Differential involvement of the cerebellum in biological and coherent motion perception

Author(s): Jokisch D, Troje NF, Koch B, Schwarz M, Daum I

Depth perception in cerebellar and basal ganglia disease

Author(s): Maschke M, Gomez CM, Tuite PJ, Pickett K, Konczak J

Cerebellar damage produces selective deficits in verbal working memory

Author(s): Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, et al.

Cognitive functions in patients with MR-defined chronic focal cerebellar lesions

Author(s): Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, et al.