Topographic distribution of output neurons in cerebellar nuclei and cortex to somatotopic map of primary motor cortex

Author(s): Lu X, Miyachi S, Ito Y, Nambu A, Takada M

Abstract

To investigate the somatotopic organization of the cerebellum, we analysed multisynaptic inputs to the primary motor cortex (MI) using retrograde transneuronal transport of rabies virus. At 3 days after rabies injections into proximal forelimb, distal forelimb and hindlimb representations of the macaque MI, second-order neurons via the thalamus were labeled in the deep cerebellar nuclei, including the dentate (DN), anterior interpositus (AIN) and posterior interpositus nuclei. In the DN, the labeling of both the forelimb and hindlimb was seen mainly in the dorsal aspect. The labeling of the hindlimb was located rostral to that of the forelimb and the labeling of the proximal forelimb was located slightly rostral to that of the distal forelimb. The same rostrocaudal arrangement was observed in the AIN. In the posterior interpositus nucleus, however, labeling from the MI hindlimb and forelimb representations largely overlapped. At the 4-day postinjection period, third-order labeling occurred in Purkinje cells of the cerebellar hemisphere. The Purkinje cell labeling from the forelimb representation, including the proximal and distal regions, was observed primarily in lobules IV-VI and crus I. The proximal forelimb labeling was both rostral and lateral to that of the distal forelimb within lobules IV-VI. However, the hindlimb labeling was seen both rostral and lateral to that of the proximal forelimb within lobules III-VI. These results indicate that the hindlimb, proximal forelimb and distal forelimb are arranged rostrocaudally in the DN and AIN, whereas there is dual somatotopy along the rostrocaudal and lateromedial axes in the cerebellar cortex.

Similar Articles

Trace eyeblink conditioning in human subjects with cerebellar lesions

Author(s): Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, et al.

Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning

Author(s): Blaxton TA, Zeffiro TA, Gabrieli JD, Bookheimer SY, Carrillo MC, et al.

A functional anatomical study of associative learning in humans

Author(s): Molchan SE, Sunderland T, McIntosh AR, Herscovitch P, Schreurs BG

Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats

Author(s): Gruart A , Guillazo-Blanch G, Fernandez-Mas R, Jimenez-Diaz L, Delgado-Garcia JM

Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice

Author(s): Park JS, Onodera T, Nishimura S, Thompson RF, Itohara S

Cerebellar cortical inhibition and classical eyeblink conditioning

Author(s): Bao S, Chen L, Kim JJ, Thompson RF

Synapse formation is associated with memory storage in the cerebellum

Author(s): Kleim JA, Freeman JH Jr, Bruneau R, Nolan BC, Cooper NR, et al.

Parallel neural networks for learning sequential procedures

Author(s): Hikosaka O, Nakahara H, Rand MK, Lu X, Nakamura K, et al.

Cortical control of motor sequences

Author(s): Ashe J, Lungu OV, Basford, AT, Lu X

The cerebellar cognitive affective syndrome

Author(s): Schmahmann JD, Sherman JC.

Differential involvement of the cerebellum in biological and coherent motion perception

Author(s): Jokisch D, Troje NF, Koch B, Schwarz M, Daum I

Depth perception in cerebellar and basal ganglia disease

Author(s): Maschke M, Gomez CM, Tuite PJ, Pickett K, Konczak J

Cerebellar damage produces selective deficits in verbal working memory

Author(s): Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, et al.

Cognitive functions in patients with MR-defined chronic focal cerebellar lesions

Author(s): Richter S, Gerwig M, Aslan B, Wilhelm H, Schoch B, et al.