Comparison of MSCs Isolated From Pulp and Periodontal Ligament

Author(s): Hakki SS, Kayis SA, Hakki EE, Bozkurt SB, Duruksu G, et al.

Abstract

Background: Cell-based therapy using mesenchymal stem cells (MSCs) seems promising to obtain regeneration of dental tissues. A comparison of tissue sources, including periodontal ligament (PDL) versus pulp (P), could provide critical information to select an appropriate MSC population for designing predictable regenerative therapies. The purpose of this study is to compare the proliferation and stemness and the MSC-specific and mineralized tissue-specific gene expression of P-MSCs and PDL-MSCs.

Methods: MSCs were obtained from PDL and P tissue of premolars (n = 3) extracted for orthodontic reasons. MSC proliferation was evaluated using a real-time cell analyzer for 160 hours. Telomerase activity was evaluated by a telomeric repeat amplification protocol assay based on enzyme-linked immunosorbent assay. Total RNA was isolated from the MSCs on day 3. A polymerase chain reaction (PCR) array was used to compare the expression of MSC-specific genes. The expression of mineralized tissue-associated genes, including Type I collagen (COL I), runt-related transcription factor 2 (RunX2), bone sialoprotein (BSP), and osteocalcin (OCN) messenger RNA (mRNA), was evaluated using quantitative real-time PCR.

Results: Higher proliferation potential and telomerase activity were observed in the P-MSCs compared to PDL-MSCs of premolar teeth. Fourteen of 84 genes related to MSCs were expressed differently in the PDL-MSCs versus the P-MSCs. The expressions of bone morphogenetic protein 2 (BMP2) and BMP6; sex-determining region Y-box 9 (SOX9); integrin, alpha 6 (ITGA6); melanoma cell adhesion molecule (MCAM); phosphatidylinositol glycan anchor biosynthesis, class S (PIGS); prominin 1 (PROM1); ribosomal protein L13A (RPL13A); and microphthalmia-associated transcription factor (MITF) were higher in the P-MSCs compared to the PDL-MSCs, and higher expression of matrix metalloproteinase 2 (MMP2), interleukin (IL)-6, insulin (INS), alanyl (membrane) aminopeptidase (ANPEP), and IL-10 were observed in the PDL-MSCs. However, there was no statistically significant difference in the expression of mineralized tissue-associated genes, including BSP and RunX2, between the P-MSCs and the PDL-MSCs. Higher expression of COL I and lower expression of OCN mRNA transcripts were noted in the PDL-MSCs compared to the P-MSCs.

Conclusions: The results of this study suggest that MSCs isolated from P and PDL tissues show different cellular behavior. To increase the predictability of MSC-based regenerative treatment, differences in dental tissue-derived MSCs and favorable aspects of cell sources should be further clarified.

Similar Articles

Stem cells: potential therapeutics for periodontal regeneration

Author(s): Silvério KG, Benatti BB, Casati MZ, Sallum EA, Nociti FH Jr

Somatic stem cells for regenerative dentistry

Author(s): Morsczeck C, Schmalz G, Reichert TE, Völlner F, Galler K, et al.

Investigation of multipotent postnatal stem cells from human periodontal ligament

Author(s): Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, et al.

Recovery of stem cells from cryopreserved periodontal ligament

Author(s): Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, et al.

The efficacy of mesenchymal stem cells to regenerate and repair dental structures

Author(s): Shi S, Bartold PM, Miura M, Seo BM, Robey PG, et al.

Development of a multipotent clonal human periodontal ligament cell line

Author(s): Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, et al.

Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases

Author(s): Feng F, Akiyama K, Liu Y, Yamaza T, Wang TM, et al.

Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use

Author(s): Iwata T, Yamato M, Zhang Z, Mukobata S, Washio K, et al.

Dental stem cells--characteristics and potential

Author(s): Bojic S, Volarevic V, Ljujic B, Stojkovic M

Clinical utility of stem cells for periodontal regeneration

Author(s): Hynes K, Menicanin D, Gronthos S, Bartold PM

Mesenchymal stem/progenitor cell isolation from tooth extraction sockets

Author(s): Nakajima R, Ono M, Hara ES, Oida Y, Shinkawa S, et al.

Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system

Author(s): Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, et al.

Plasticity of stem cells derived from adult periodontal ligament

Author(s): Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Cheung HS

Human periodontal ligament stem cells repair mental nerve injury

Author(s): Li B, Jung HJ, Kim SM, Kim MJ, Jahng JW, et al.

Regulation of PLAP-1 expression in periodontal ligament cells

Author(s): Yamada S, Ozawa Y, Tomoeda M, Matoba R, Matsubara K, et al.

Cell-seeding of periodontal ligament fibroblasts

Author(s): Van Dijk LJ, Schakenraad JM, van der Voort HM, Herkströter FM, Busscher HJ

Isolation of human osteoblast-like cells and in vitro amplification for tissue engineering

Author(s): Malekzadeh R, Hollinger JO, Buck D, Adams DF, McAllister BS

Cementoblast delivery for periodontal tissue engineering

Author(s): Zhao M, Jin Q, Berry JE, Nociti FH Jr, Giannobile WV, et al.

Advanced Biomatrix Designs for Regenerative Therapy of Periodontal Tissues

Author(s): Kim JH, Park CH, Perez RA, Lee HY, Jang JH, et al.

Multiphasic scaffolds for periodontal tissue engineering

Author(s): Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM