Isolation of human osteoblast-like cells and in vitro amplification for tissue engineering

Author(s): Malekzadeh R, Hollinger JO, Buck D, Adams DF, McAllister BS

Abstract

As the field of dental implants continues to grow at a rapid rate so does our quest to find new techniques to enhance bone grafting. Tissue engineering is an exciting new technique in bone grafting. Therefore, the purposes of this study were to develop a simple, reproducible method to isolate human osteoblast-like cells (HOBs) and to evaluate in vitro cell proliferation within 2 different 3-dimensional (3-D) constructs targeted for tissue engineering applications. Ultimately, HOBs that have been amplified within 3-D constructs may be employed for bone regeneration techniques, such as onlay and sinus grafting prior to implant placement. Our cell isolation protocol employed human fetal calvaria tissue sequentially digested with trypsin and collagenase. The HOB cells from only the third and fourth digests were obtained, cultured and evaluated within the constructs. An osteoblast-like phenotype was in part verified for these HOB cells by demonstrating a significantly higher alkaline phosphatase activity than for human gingival fibroblasts, and a comparable level to the osteoblast cell line MG-63. The HOB cells were cultured within either poly (D,L-lactide) (PLA) or a fused fiber ceramic and evaluated for the ability to support in vitro HOB amplification. HOB proliferation was validated by scanning electron microscopy, identifying cells throughout the 3-D constructs. Continuous cell viability was demonstrated for the duration of the 33-day evaluation period and the extent of cell amplification reached approximately 20 times the seeding density. The in vitro amplification results further indicate that tissue engineering strategies with either the PLA or fused fiber construct may be suitable for bone regeneration therapy for dental implants.

Similar Articles

Stem cells: potential therapeutics for periodontal regeneration

Author(s): Silvério KG, Benatti BB, Casati MZ, Sallum EA, Nociti FH Jr

Somatic stem cells for regenerative dentistry

Author(s): Morsczeck C, Schmalz G, Reichert TE, Völlner F, Galler K, et al.

Investigation of multipotent postnatal stem cells from human periodontal ligament

Author(s): Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, et al.

Recovery of stem cells from cryopreserved periodontal ligament

Author(s): Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, et al.

The efficacy of mesenchymal stem cells to regenerate and repair dental structures

Author(s): Shi S, Bartold PM, Miura M, Seo BM, Robey PG, et al.

Development of a multipotent clonal human periodontal ligament cell line

Author(s): Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, et al.

Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases

Author(s): Feng F, Akiyama K, Liu Y, Yamaza T, Wang TM, et al.

Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use

Author(s): Iwata T, Yamato M, Zhang Z, Mukobata S, Washio K, et al.

Dental stem cells--characteristics and potential

Author(s): Bojic S, Volarevic V, Ljujic B, Stojkovic M

Clinical utility of stem cells for periodontal regeneration

Author(s): Hynes K, Menicanin D, Gronthos S, Bartold PM

Mesenchymal stem/progenitor cell isolation from tooth extraction sockets

Author(s): Nakajima R, Ono M, Hara ES, Oida Y, Shinkawa S, et al.

Comparison of MSCs Isolated From Pulp and Periodontal Ligament

Author(s): Hakki SS, Kayis SA, Hakki EE, Bozkurt SB, Duruksu G, et al.

Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system

Author(s): Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, et al.

Plasticity of stem cells derived from adult periodontal ligament

Author(s): Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Cheung HS

Human periodontal ligament stem cells repair mental nerve injury

Author(s): Li B, Jung HJ, Kim SM, Kim MJ, Jahng JW, et al.

Regulation of PLAP-1 expression in periodontal ligament cells

Author(s): Yamada S, Ozawa Y, Tomoeda M, Matoba R, Matsubara K, et al.

Cell-seeding of periodontal ligament fibroblasts

Author(s): Van Dijk LJ, Schakenraad JM, van der Voort HM, Herkströter FM, Busscher HJ

Cementoblast delivery for periodontal tissue engineering

Author(s): Zhao M, Jin Q, Berry JE, Nociti FH Jr, Giannobile WV, et al.

Advanced Biomatrix Designs for Regenerative Therapy of Periodontal Tissues

Author(s): Kim JH, Park CH, Perez RA, Lee HY, Jang JH, et al.

Multiphasic scaffolds for periodontal tissue engineering

Author(s): Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM