Recommended Conferences

Cancer-Treatment and Therapeutics

New York, USA
Related Subjects
 

Bile acids modulate the golgi membrane fission process via a protein kinase Ceta and protein kinase D-dependent pathway in colonic epithelial cells

Author(s): Byrne AM, Foran E, Sharma R, Davies A, Mahon C, O'Sullivan J, et al

Abstract

Deoxycholic acid (DCA) is a secondary bile acid that modulates signalling pathways in epithelial cells. DCA has been implicated in pathogenesis of colon carcinoma, particularly by activation of the protein kinase C (PKC) pathway. Ursodeoxycholic acid (UDCA), a tertiary bile acid, has been observed to have chemopreventative effects. The aim of this study was to investigate the effect of DCA and UDCA on the subcellular localization and activity of PKCη and its downstream effects on Golgi structure in a colon cancer cell model. PKCη expression was localized to the Golgi in HCT116 colon cancer cells. DCA induced fragmentation of the Golgi in these cells following activation of PKCη and its downstream effector protein kinase D (PKD). Pretreatment of cells with UDCA or a glucocorticoid, dexamethasone, inhibited DCA-induced PKCη/PKD activation and Golgi fragmentation. Knockdown of glucocorticoid receptor (GR) expression using small interfering RNA or inhibition using the GR antagonist mifepristone attenuated the inhibitory effect of UDCA on Golgi fragmentation. Elevated serum and faecal levels of DCA have been previously reported in patients with ulcerative colitis (UC) and colon cancer. Analysis of Golgi architecture in vivo using tissue microarrays revealed Golgi fragmentation in UC and colorectal cancer tissue. We have demonstrated that DCA can disrupt the structure of the Golgi, an organelle critical for normal cell function. Inhibition of this DCA-induced Golgi fragmentation by UDCA was mediated via the GR. This represents a potential mechanism of observed chemopreventative effects of UDCA in benign and malignant disease of the colon.

Similar Articles

Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin

Author(s): Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y

Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells

Author(s): Ignacio BJ, Olmo N, Perez-Ramos P, Santiago-Gómez A, Lecona E, Turnay J, et al

Intestinal bile acid physiology and pathophysiology

Author(s): Martínez-Augustin O, Sánchez de Medina F

Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis

Author(s): Martínez-Moya P, Romero-Calvo I, Requena P, Hernández-Chirlaque C, Aranda CJ, González R, et al

Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health

Author(s): Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiaansen BAJ, Schaap FG, Rust C, et al

Bile acids as carcinogens in human gastrointestinal cancers

Author(s): Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H

Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling

Author(s): Dossa AY, Escobar O, Golden J, Frey MR, Ford HF, Gayer CP

A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis

Author(s): Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, et al

Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function

Author(s): Odunsi-Shiyanbade ST, Camilleri M, McKinzie S, Burton D, Carlson P, Busciglio IP, et al

Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome

Author(s): Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, et al

Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases

Author(s): Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, et al