Recommended Conferences

Cancer-Treatment and Therapeutics

New York, USA
Related Subjects

Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis

Author(s): Martínez-Moya P, Romero-Calvo I, Requena P, Hernández-Chirlaque C, Aranda CJ, González R, et al


The denomination of inflammatory bowel disease comprises a group of chronic inflammatory diseases of the digestive tract, ulcerative colitis and Crohn's disease being the most important conditions. Bile acids may play a role both in etiology and pharmacology of this disease. Thus, although deoxycholic acid is regarded as a proinflammatory agent ursodeoxycholic acid, which is currently being used to treat certain types of cholestasis and primary biliary cirrhosis, because of their choleretic, cytoprotective and immunomodulatory effects, it has been reported to exert an anti-inflammatory activity. We aim to confirm and characterize the intestinal antiinflammatory activity of ursodeoxycholic acid. The experimental model trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats has been used. Animal status was characterized by a number of macroscopic and biochemical parameters. Oral administration of ursodeoxycholic acid was able to ameliorate experimental colonic inflammation. This occurred only at a relatively high dose (50 mg/kg day), whereas ursodeoxycholic acid was without significant effect at doses of 10 and 25 mg/kg day. The therapeutic effect was evidenced, among others, by a higher body weight recovery, a diminished affected to total mucosal area and lower alkaline phosphatase activity in treated vs. control (TNBS treated) animals. These results indicate that, at the appropriate dose, ursodeoxycholic acid is a potentially useful drug to reduce intestinal inflammation and could be envisaged to be incorporated in the treatment of inflammatory bowel diseases.

Similar Articles

Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin

Author(s): Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y

Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells

Author(s): Ignacio BJ, Olmo N, Perez-Ramos P, Santiago-Gómez A, Lecona E, Turnay J, et al

Intestinal bile acid physiology and pathophysiology

Author(s): Martínez-Augustin O, Sánchez de Medina F

Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health

Author(s): Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiaansen BAJ, Schaap FG, Rust C, et al

Bile acids as carcinogens in human gastrointestinal cancers

Author(s): Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H

Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling

Author(s): Dossa AY, Escobar O, Golden J, Frey MR, Ford HF, Gayer CP

A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis

Author(s): Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, et al

Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function

Author(s): Odunsi-Shiyanbade ST, Camilleri M, McKinzie S, Burton D, Carlson P, Busciglio IP, et al

Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome

Author(s): Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, et al

Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases

Author(s): Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, et al