Recommended Conferences

Cancer-Treatment and Therapeutics

New York, USA
Related Subjects
 

Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin

Author(s): Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y

Abstract

Background Human gut bacteria can synthesize proteinogenic amino acids and produce a range of metabolites via protein fermentation, some known to exert beneficial or harmful physiological effects on the host. However, the effects of the type and amount of dietary protein consumed on these metabolic processes, as well as the effects of the microbiota-derived amino acids and related metabolites on the host health are still predominantly unknown. Scope and approach This review provides an up-to-date description of the dominant pathways/genes involved in amino acid metabolism in gut bacteria, and provides an inventory of metabolic intermediates derived from bacterial protein fermentation that may affect human health. Advances in understanding bacterial protein fermentation pathways and metabolites generated at a global level via the implementation of ‘omics’ technologies are reviewed. Finally, the impact of dietary protein intake and high-protein diets on human health is discussed. Key findings and conclusions The intestinal microbiota is able to synthesize amino acids, but the net result of amino acid production and utilization, according to dietary patterns still needs to be determined. The amount of ingested dietary protein appears to modify both the diversity and composition of the intestinal microbiota as well as the luminal environment of the intestinal epithelium and peripheral tissues. The understanding of the consequences of such changes on the host physiology and pathophysiology is still in an early stage but major progress is expected in the near future with the investigation of host-microbe omics profiles from well-controlled human intervention studies.

Similar Articles

Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells

Author(s): Ignacio BJ, Olmo N, Perez-Ramos P, Santiago-Gómez A, Lecona E, Turnay J, et al

Intestinal bile acid physiology and pathophysiology

Author(s): Martínez-Augustin O, Sánchez de Medina F

Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis

Author(s): Martínez-Moya P, Romero-Calvo I, Requena P, Hernández-Chirlaque C, Aranda CJ, González R, et al

Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health

Author(s): Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiaansen BAJ, Schaap FG, Rust C, et al

Bile acids as carcinogens in human gastrointestinal cancers

Author(s): Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H

Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling

Author(s): Dossa AY, Escobar O, Golden J, Frey MR, Ford HF, Gayer CP

A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis

Author(s): Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, et al

Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function

Author(s): Odunsi-Shiyanbade ST, Camilleri M, McKinzie S, Burton D, Carlson P, Busciglio IP, et al

Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome

Author(s): Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, et al

Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases

Author(s): Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, et al