Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi

Author(s): Buskirk AD, Hettick JM, Chipinda I, Law BF, Siegel PD, et al.

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to discriminate moniliaceous fungal species; however, darkly pigmented fungi yield poor fingerprint mass spectra that contain few peaks of low relative abundance. In this study, the effect of dark fungal pigments on the observed MALDI mass spectra was investigated. Peptide and protein samples containing varying concentrations of synthetic melanin or fungal pigments extracted from Aspergillus niger were analyzed by MALDI-TOF and MALDI-qTOF (quadrupole TOF) MS. Signal suppression was observed in samples containing greater than 250ng/μl pigment. Microscopic examination of the MALDI sample deposit was usually heterogeneous, with regions of high pigment concentration appearing as black. Acquisition of MALDI mass spectra from these darkly pigmented regions of the sample deposit yielded poor or no [M+H](+) ion signal. In contrast, nonpigmented regions within the sample deposit and hyphal negative control extracts of A. niger were not inhibited. This study demonstrated that dark fungal pigments inhibited the desorption/ionization process during MALDI-MS; however, these fungi may be successfully analyzed by MALDI-TOF MS when culture methods that suppress pigment expression are used. The addition of tricyclazole to the fungal growth media blocks fungal melanin synthesis and results in less melanized fungi that may be analyzed by MALDI-TOF MS.

Similar Articles

The rapid identification of intact microorganisms using mass spectrometry

Author(s): Claydon MA, Davey SN, Edwards-Jones V, Gordon DB

MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory

Author(s): Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, et al.

Investigation of MALDI-TOF and FT-MS techniques for analysis of Escherichia coli whole cells

Author(s): Jones JJ, Stump MJ, Fleming RC, Lay JO Jr, Wilkins CL

Identification of Dermatophytes by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Author(s): De Respinis S, Tonolla M, Pranghofer S, Petrini L, Petrinia O, et al

Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing

Author(s): Goldenberger D, Künzli A, Vogt P, Zbinden R, Altwegg M

Multilocus sequence typing of Streptococcus pneumoniae by use of mass spectrometry

Author(s): Dunne EM, Ong EK, Moser RJ, Siba PM, Phuanukoonnon S, et al.

Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry

Author(s): Erhard M, Hipler UC, Burmester A, Brakhage AA, Wöstemeyer J

MALDI-TOF mass spectrometry - a rapid method for the identification of dermatophyte species

Author(s): Nenoff P, Erhard M, Simon JC, Muylowa GK, Herrmann J, et al.

Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry

Author(s): Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T

Characterization of ß-lactamase enzyme activity in bacterial lysates using MALDI-mass spectrometry

Author(s): Hooff GP, van Kampen JJ, Meesters RJ, van Belkum A, Goessens WH, et al.

MALDI-TOF-MS for rapid detection of staphylococcal Panton-Valentine leukocidin

Author(s): Bittar F, Ouchenane Z, Smati F, Raoult D, Rolain J