CYCLIN H;1 regulates drought stress responses and blue light–induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis

Author(s): Zhou XF, Jin YH, Yoo CY, Lin XL, Kim WY, et al.

Abstract

Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE Ds (CDKDs) phosphorylate the C-terminal domain of the largest subunit of RNA polymerase II. Arabidopsis CYCLIN H;1 (CYCH;1) interacts with and activates CDKDs; however, the physiological function of CYCH;1 has not been determined. Here, we report that CYCH;1, which is localized to the nucleus, positively regulates blue light-induced stomatal opening. Reduced-function cych;1 RNA interference (cych;1 RNAi) plants exhibited a drought tolerance phenotype. CYCH;1 is predominantly expressed in guard cells, and its expression was substantially down-regulated by dehydration. Transpiration of intact leaves was reduced in cych;1 RNAi plants compared with the wild-type control in light but not in darkness. CYCH;1 down-regulation impaired blue light-induced stomatal opening but did not affect guard cell development or abscisic acid-mediated stomatal closure. Microarray and real-time polymerase chain reaction analyses indicated that CYCH;1 did not regulate the expression of abscisic acid-responsive genes or light-induced stomatal opening signaling determinants, such as MYB60, MYB61, Hypersensitive to red and blue1, and Protein phosphatase7. CYCH;1 down-regulation induced the expression of redox homeostasis genes, such as LIPOXYGENASE3 (LOX3), LOX4, ARABIDOPSIS GLUTATHIONE PEROXIDASE 7 (ATGPX7), EARLY LIGHT-INDUCIBLE PROTEIN1 (ELIP1), and ELIP2, and increased hydrogen peroxide production in guard cells. Furthermore, loss-of-function mutations in CDKD;2 or CDKD;3 did not affect responsiveness to drought stress, suggesting that CYCH;1 regulates the drought stress response in a CDKD-independent manner. We propose that CYCH;1 regulates blue light-mediated stomatal opening by controlling reactive oxygen species homeostasis.

Similar Articles

A novel growing device inspired by plant root soil penetration behaviors

Author(s): Sadeghi A, Tonazzini A, Popova L, Mazzolai B

Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms

Author(s): van Veen H, Mustroph A, Barding GA, Vergeer–van Eijk M, Welschen–Evertman RA, et al.

An assessment of wheat yield sensitivity and breeding gains in hot environments

Author(s): Gourdji SM, Mathews KL, Reynolds M, Crossa J, Lobell DB

Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops

Author(s): Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK

Thejasmonate pathway mediates salt tolerance in grapevines

Author(s): Ismail A, Riemann M, Nick P

Assessment of molecular diversity in chickpea (Cicerarietinum L

Author(s): Yadav A, Singh AL, Rai GK, Singh M

A role for lipid-mediated signaling in plant gravitropism

Author(s): Smith CM, Desai M, Land ES, Perera IY

Strigolactones as germination stimulants for root parasitic plants

Author(s): Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y

Growth coordination and the shoot epidermis

Author(s): Savaldi-Goldstein S, Chory J

Is callose a barrier for lead ions entering Lemna minor L

Author(s): Samardakiewicz S, Krzesłowska M, Bilski H, Bartosiewicz R, Woźny A