Evaluation of topical hesperetin matrix filmfor back-of-the-eye delivery

Author(s): Adelli GR, Hingorani T, PunyamurthulaN, Balguri SP, Majumdar S

Abstract

Purpose

The goal of the present study was to develop a poly (ethylene oxide) N10 (PEO N10) based melt-cast matrix system for efficient and prolonged delivery of hesperetin (HT), a promising bioflavonoid, to the posterior segment of the eye through the topical route.

Methods

HT film was prepared by melt-cast method using PEO N10 and cut into 4 mm × 2 mm segments, each weighing 8 mg. This film was evaluated with respect to in vitro release rates and also transmembrane delivery across Spectra/Por® membrane (MWCO: 10,000 Daltons) and isolated rabbit corneas. Ocular tissue concentrations were also determined postapplication of the film in ex vivo and in vivo models.

Results

HT release from the film was determined to be about 95.3% within 2 h. In vitro transcorneal flux was observed to be 0.58 ± 0.05 μg/min/cm2 across the isolated rabbit cornea. High levels of HT were detected in the retina-choroid (RC) and vitreous humor (VH) in the ex vivo model following topical application of the film. Significant levels of HT were observed in both anterior and posterior segment ocular tissues 1 h post topical application of the 10 and 20%w/w HT films on the rabbit eye. Moreover, HT was detected in the VH and RC even after 6 h following topical application of the film in vivo.

Conclusion

The results from this study suggest that the melt-cast films can serve as a viable platform for sustained topical delivery of bioflavonoids, and other therapeutic agents, into the back-of-the eye tissues.

Similar Articles

Drug delivery to the posterior segment of the eye

Author(s): Lee TWY, RobinsonJR

Development andevaluation of prolonged release topical indomethacin formulations for ocularinflammation

Author(s): AdelliGR, Balguri SP, Punyamurthula N, Bhagav P, Majumdar S

Theblood-ocular barriers

Author(s): Cunha-Vaz J

Drug delivery to the retina: challenges and opportunities

Author(s): Duvvuri S,Majumdar S, Mitra AK

Ocularpreparations: the formulation approach

Author(s): Kaur IP, Kanwar M

Ocular inserts - Advancement in therapy of eye diseases

Author(s): Kumari A, Sharma PK, Garg VK,Garg G

Ocular inserts for topical delivery

Author(s): SaettoneFM, Salminen L

Stability of benzocaine formulated in commercialoral disintegrating tablet platforms

Author(s): Köllmer M, Popescu C, Manda P,Zhou L, Gemeinhart RA

New methods of drug delivery

Author(s): Langer R

Iontophoretic drug delivery for the treatment ofscars

Author(s): Manda P, Angamuthu M, HiremathSR, Raman V, Murthy SN

Polysulfone capillary fiber forintraocular drug delivery: in vitro and in vivo evaluations

Author(s): Rahimy MH, PeymanGA, Chin SY, Golshani R, Aras C, et al.

Intravitreal sustained-releaseganciclovir

Author(s): Smith TJ, Pearson PA, BlandfordDL, Brown JD, Goins KA, et al.

Delivery of cefotaxime to the brain viaintranasal administration

Author(s): Manda P, Hargett JK, Kiran Vaka SR,Repka MA, Narasimha Murthy S

Biodegradable Intrascleral Implant for SustainedIntraocular Delivery of Betamethasone Phosphate

Author(s): Okabe J, Kimura H, Kunou N, OkabeK, Kato A, et al.

Delivery of ziconotide to cerebrospinalfluid via intranasal pathway for the treatment of chronic pain

Author(s): Manda P, Kushwaha AS, Kundu S,Shivakumar H, Jo SB, et al.

Episcleral implants for topotecandelivery to the posterior segment of the eye

Author(s): Carcaboso AM, Chiappetta DA,Opezzo JA, Höcht C, Fandiño AC, et al.