Growth coordination and the shoot epidermis

Author(s): Savaldi-Goldstein S, Chory J

Abstract

Cell-cell communication is essential for growth and development of multicellular organisms. In higher plants, the shoot organs are derived from three clonally distinct cell layers present in the meristem. The role of the outermost L1 cell layer and its derived epidermis in coordinating growth of the inner-cell layers has long been debated. This question has been revisited recently using molecular tools to manipulate cell cycle progression or cell expansion, specifically in the epidermis. These studies conclude that cells in the epidermis both promote and restrict growth of the entire shoot by sending growth signals - either physical or chemical - to the inner layers.

Similar Articles

A novel growing device inspired by plant root soil penetration behaviors

Author(s): Sadeghi A, Tonazzini A, Popova L, Mazzolai B

Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms

Author(s): van Veen H, Mustroph A, Barding GA, Vergeer–van Eijk M, Welschen–Evertman RA, et al.

An assessment of wheat yield sensitivity and breeding gains in hot environments

Author(s): Gourdji SM, Mathews KL, Reynolds M, Crossa J, Lobell DB

Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops

Author(s): Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK

Thejasmonate pathway mediates salt tolerance in grapevines

Author(s): Ismail A, Riemann M, Nick P

Assessment of molecular diversity in chickpea (Cicerarietinum L

Author(s): Yadav A, Singh AL, Rai GK, Singh M

A role for lipid-mediated signaling in plant gravitropism

Author(s): Smith CM, Desai M, Land ES, Perera IY

Strigolactones as germination stimulants for root parasitic plants

Author(s): Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y

Is callose a barrier for lead ions entering Lemna minor L

Author(s): Samardakiewicz S, Krzesłowska M, Bilski H, Bartosiewicz R, Woźny A