Recommended Conferences

Fungal Infections and Treatments

Miami, USA

Clinical Microbiology and Infectious Diseases

Miami, USA

Cancer-Treatment and Therapeutics

New York, USA
Related Subjects

Vitamin C for DNA damage prevention

Author(s): Sram RJ, Binkova B, Rossner P


The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2′-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

Similar Articles

The role of antioxidants in skin cancer prevention and treatment

Author(s): Godic A, Poljšak B, Adamic M, Dahmane R

Cytotoxicity of ascorbate, lipoic acid, and other antioxidants in hollow fiber in vitro tumors

Author(s): Casciari JJ, Riordan NH, Schmidt TL, Meng XL, Jackson JA, et al.

Ascorbic acid: Chemistry, biology and the treatment of cancer

Author(s): Juan Du, Joseph J. Cullena, Garry R. Buettner

Vitamin C promotes wound healing through novel pleiotropic mechanisms

Author(s): Mohammed BM, Fisher BJ, Kraskauskas D, War S, Wayne JS, et al.

Vitamin C promotes wound healing through novel pleiotropic mechanisms

Author(s): Mohammed B, Fisher BJ, Kraskauskas D, War S, Wayne JS, et al.

Effects of business-as-usual anthropogenic emissions on air quality

Author(s): Pozzer A, Zimmermann P, Doering U, Van Aardenne J, Tost H, et al.

Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation

Author(s): Bruno RS, Leonard SW, Atkinson J, Montine TJ, Ramakrishnan R, et al.

Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin

Author(s): Lin FH, Lin JY, Gupta RD, Tournas JA, Burch JA, et al.

Vitamin C and Immune Function

Author(s): Anitra CC, Silvia M

Monocyte locomotion in anergic chronic brucellosis patients: The in vivo effect of ascorbic acid

Author(s): Boura P, Tsapas G, Papadopoulou A, Magoula I, Kountouras G

Nonsunscreen photoprotection: antioxidants add value to a sunscreen

Author(s): Matsui MS, Hsia A, Miller JD, Hanneman K, Scull H, et al.