A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins

Author(s): Navarro-Sastre A, Tort F, Stehling O, Uzarska MA, Arranz JA, et al.

Abstract

We report on ten individuals with a fatal infantile encephalopathy and/or pulmonary hypertension, leading to death before the age of 15 months. Hyperglycinemia and lactic acidosis were common findings. Glycine cleavage system and pyruvate dehydrogenase complex (PDHC) activities were low. Homozygosity mapping revealed a perfectly overlapping homozygous region of 1.24 Mb corresponding to chromosome 2 and led to the identification of a homozygous missense mutation (c.622G > T) in NFU1, which encodes a conserved protein suggested to participate in Fe-S cluster biogenesis. Nine individuals were homozygous for this mutation, whereas one was compound heterozygous for this and a splice-site (c.545 + 5G > A) mutation. The biochemical phenotype suggested an impaired activity of the Fe-S enzyme lipoic acid synthase (LAS). Direct measurement of protein-bound lipoic acid in individual tissues indeed showed marked decreases. Upon depletion of NFU1 by RNA interference in human cell culture, LAS and, in turn, PDHC activities were largely diminished. In addition, the amount of succinate dehydrogenase, but no other Fe-S proteins, was decreased. In contrast, depletion of the general Fe-S scaffold protein ISCU severely affected assembly of all tested Fe-S proteins, suggesting that NFU1 performs a specific function in mitochondrial Fe-S cluster maturation. Similar biochemical effects were observed in Saccharomyces cerevisiae upon deletion of NFU1, resulting in lower lipoylation and SDH activity. Importantly, yeast Nfu1 protein carrying the individuals' missense mutation was functionally impaired. We conclude that NFU1 functions as a late-acting maturation factor for a subset of mitochondrial Fe-S proteins.

Similar Articles

Mitochondrial dysfunction in obesity

Author(s): Bournat JC, Brown CW

Increased oxidative stress in obesity and its impact on metabolic syndrome

Author(s): Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al.

Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress

Author(s): Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM

Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats

Author(s): Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, et al.

Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport

Author(s): Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Barber A, Martínez JA, et al.

Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice

Author(s): Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, et al.

Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes

Author(s): Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaïdi-Tiali N

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice

Author(s): Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, et al.

Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways

Author(s): Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, et al.

A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene

Author(s): Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al.

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Oxidative capacity and aging in human muscle

Author(s): Conley KE, Jubrias SA, Esselman PC

Mitochondrial function and apoptotic susceptibility in aging skeletal muscle

Author(s): Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, et al.

Excessive loss of skeletal muscle mass in older adults with type 2 diabetes

Author(s): Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, et al.