Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells

Author(s): Lepoivre M, Chenais B, Yapo A, Lemaire G, Thelander L, et al.

Abstract

The murine adenocarcinoma cell line TA 3 synthesized nitrite from L-arginine upon stimulation with gamma-interferon (IFN-gamma) associated with tumor necrosis factor (TNF), and/or bacterial lipopolysaccharide (LPS), but not with IFN-gamma, TNF, or LPS added separately. Induction of the NO2(-)-generating activity caused an inhibition of DNA synthesis in TA 3 cells. This inhibition was prevented by the L-arginine analog N omega-nitro-L-arginine, which inhibited under the same conditions nitrite production by TA 3 cells. The TA 3 M2 subclone, selected for enhanced ribonucleotide reductase activity, was found to be less sensitive than the wild phenotype TA 3 WT to the cytostatic activity mediated by the NO2(-)-generating system. Cytosolic preparations from TA 3 M2 cells treated for 24 or 48 h with IFN-gamma, TNF, and LPS exhibited a reduced ribonucleotide reductase activity, compared to untreated control cells. No reduction in ribonucleotide reductase activity was observed when N omega-nitro-L-arginine was added to treated cells. Addition of L-arginine, NADPH, and tetrahydrobiopterin into cytosolic extracts from 24-h treated TA 3 M2 cells triggered the synthesis of metabolic products from the NO2(-)-generating pathway. This resulted in a dramatic inhibition of the residual ribonucleotide reductase activity present in the extracts. The inhibition was reversed by NG-monomethyl-L-arginine, another specific inhibitor of the NO2(-)-generating activity. No L-arginine-dependent inhibition of ribonucleotide reductase activity was observed using extracts from untreated cells that did not express NO2(-)-generating activity. These results demonstrate that, in an acellular preparation, molecules derived from the NO2(-)-generating pathway exert an inhibitory effect on the ribonucleotide reductase enzyme. This negative action might explain the inhibition of DNA synthesis induced in adenocarcinoma cells by the NO2(-)-generating pathway.

Similar Articles

Costs and duration of care for lower extremity ulcers in patients with diabetes

Author(s): Holzer SE, Camerota A, Martens L, Cuerdon T, Crystal-Peters J, et al.

The L-arginine-nitric oxide pathway

Author(s): Moncada S, Higgs A

Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy

Author(s): Nakagawa T, Sato W, Glushakova O, Heinig M, Clarke T, et al.

eNOS gene polymorphism association with retinopathy in type 1 diabetes

Author(s): Bazzaz JT, Amoli MM, Pravica V, Chandrasecaran R, Boulton AJ, et al.

eNOS4 polymorphism of the endothelial nitric oxide synthase predicts risk for severe diabetic retinopathy

Author(s): Taverna MJ, Sola A, Guyot-Argenton C, Pacher N, Bruzzo F, et al.

Endothelial nitric oxide synthase VNTR (intron 4 a/b) polymorphism association with type 2 diabetes and its chronic complications

Author(s): Mehrab-Mohseni M, Tabatabaei-Malazy O, Hasani-Ranjbar S, Amiri P, Kouroshnia A, et al.

Global prevalence of diabetes: estimates for the year 2000 and projections for 2030

Author(s): Wild S, Roglic G, Green A, Sicree R, King H

Ethnic India: a genomic view, with special reference to peopling and structure

Author(s): Basu A, Mukherjee N, Roy S, Sengupta S, Banerjee S, et al.

Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians

Author(s): Ahluwalia TS, Ahuja M, Rai TS, Kohli HS, Sud K, et al.

Endothelial nitric oxide synthase gene polymorphism and acute myocardial infarction

Author(s): Hibi K, Ishigami T, Tamura K, Mizushima S, Nyui N, et al.

Endothelial nitric oxide synthase gene is positively associated with essential hypertension

Author(s): Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, Shimasaki Y, et al.

Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with severe preeclampsia

Author(s): Yoshimura T, Yoshimura M, Tabata A, Shimasaki Y, Nakayama M, et al.