An essential role of the JAK-STAT pathway in ischemic preconditioning

Author(s): Xuan YT, Guo Y, Han H, Zhu Y, Bolli R


The goal of this study was to determine the role of the Janus tyrosine kinase (JAK)-signal transducers and activators of transcription (STAT) pathway in the late phase of ischemic preconditioning (PC). A total of 230 mice were used. At 5 min after ischemic PC (induced with six cycles of 4-min coronary occlusion/4-min reperfusion), immunoprecipitation with anti-phosphotyrosine (anti-pTyr) antibodies followed by immunoblotting with anti-JAK antibodies revealed increased tyrosine phosphorylation of JAK1 (+257 +/- 53%) and JAK2 (+238 +/- 35%), indicating rapid activation of these two kinases. Similar results were obtained by immunoblotting with anti-pTyr-JAK1 and anti-pTyr-JAK2 antibodies. Western analysis with anti-pTyr-STAT antibodies demonstrated a marked increase in nuclear pTyr-STAT1 (+301 +/- 61%) and pTyr-STAT3 (+253 +/- 60%) 30 min after ischemic PC, which was associated with redistribution of STAT1 and STAT3 from the cytosolic to the nuclear fraction and with an increase in STAT1 and STAT3 gamma-IFN activation site DNA-binding activity (+606 +/- 64%), indicating activation of STAT1 and STAT3. No nuclear translocation or tyrosine phosphorylation of STAT2, STAT4, STAT5A, STAT5B, or STAT6 was observed. Pretreatment with the JAK inhibitor AG-490 20 min before the six occlusion/reperfusion cycles blocked the enhanced tyrosine phosphorylation of JAK1 and JAK2 and the increased tyrosine phosphorylation, nuclear translocation, and enhanced DNA-binding activity of STAT1 and STAT3. The same dose of AG-490 abrogated the protection against myocardial infarction and the concomitant up-regulation of inducible NO synthase (iNOS) protein and activity observed 24 h after ischemic PC. Taken together, these results demonstrate that ischemic PC induces isoform-selective activation of JAK1, JAK2, STAT1, and STAT3, and that ablation of this response impedes the up-regulation of iNOS and the concurrent acquisition of ischemic tolerance. This study demonstrates that the JAK-STAT pathway plays an essential role in the development of late PC. The results reveal a signaling mechanism that underlies the transcriptional up-regulation of the cardiac iNOS gene and the adaptation of the heart to ischemic stress.

Similar Articles

Diabetes and the risk of heart failure

Author(s): Dhingra R, Vasan RS

Pathophysiology of myocardial reperfusion

Author(s): Fox KA, Bergmann SR, Sobel BE

Chronic pharmacological preconditioning against ischemia

Author(s): Luca MC, Liuni A, Muxel S, Münzel T, Forconi S, et al.

Myocardial fatty acid metabolism in health and disease

Author(s): Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC

FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress

Author(s): Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE

FoxO, autophagy, and cardiac remodeling

Author(s): Ferdous A, Battiprolu PK, Ni YG, Rothermel BA, Hill JA

The FoxO family in cardiac function and dysfunction

Author(s): Ronnebaum SM, Patterson C

Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

Author(s): Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, et al.

Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1

Author(s): Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A, et al.

Altered acetylcholine and norepinephrine concentrations in diabetic rat hearts

Author(s): Akiyama N, Okumura K, Watanabe Y, Hashimoto H, Ito T, et al.

Glucose for the heart

Author(s): Depre C, Vanoverschelde JL, Taegtmeyer H

Hibernating myocardium

Author(s): Wijns W, Vatner SF, Camici PG

Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study

Author(s): Leung AA, Eurich DT, Lamb DA, Majumdar SR, Johnson JA, et al.

Phosphatases at the heart of FoxO metabolic control

Author(s): Tremblay ML, Giguère V

Adiponectin in the heart and vascular system

Author(s): Ding M, Rzucidlo EM, Davey JC, Xie Y, Liu R, et al.

The role of FoxO in the regulation of metabolism

Author(s): Gross DN, van den Heuvel AP, Birnbaum MJ

FoxO transcription factors; Regulation by AKT and 14-3-3 proteins

Author(s): Tzivion G, Dobson M, Ramakrishnan G

Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction

Author(s): Parisi Q, Biondi-Zoccai GG, Abbate A, Santini D, Vasaturo F, et al.

Silent information regulator 1 protects the heart from ischemia/reperfusion

Author(s): Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, et al.

Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase

Author(s): Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al.

Oxidative stress, nitric oxide, and diabetes

Author(s): Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, et al.

Potentiation of isosorbide dinitrate effects with N-acetylcysteine in patients with chronic heart failure

Author(s): Mehra A, Shotan A, Ostrzega E, Hsueh W, Vasquez-Johnson J, et al.

Influence of diabetes mellitus on heart failure risk and outcome

Author(s): Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, et al.

Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism

Author(s): Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, et al.

Preconditioning the diabetic heart: the importance of Akt phosphorylation

Author(s): Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM