Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action

Author(s): Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, et al.

Abstract

Introduction: The oncoprotective role of food-derived polyphenol antioxidants has been described but the implicated mechanisms are not yet clear. In addition to polyphenols, phenolic acids, found at high concentrations in a number of plants, possess antioxidant action. The main phenolic acids found in foods are derivatives of 4-hydroxybenzoic acid and 4-hydroxycinnamic acid.

Methods: This work concentrates on the antiproliferative action of caffeic acid, syringic acid, sinapic acid, protocatechuic acid, ferulic acid and 3,4-dihydroxy-phenylacetic acid (PAA) on T47D human breast cancer cells, testing their antioxidant activity and a number of possible mechanisms involved (interaction with membrane and intracellular receptors, nitric oxide production).

Results: The tested compounds showed a time-dependent and dose-dependent inhibitory effect on cell growth with the following potency: caffeic acid > ferulic acid = protocatechuic acid = PAA > sinapic acid = syringic acid. Caffeic acid and PAA were chosen for further analysis. The antioxidative activity of these phenolic acids in T47D cells does not coincide with their inhibitory effect on tumoral proliferation. No interaction was found with steroid and adrenergic receptors. PAA induced an inhibition of nitric oxide synthase, while caffeic acid competes for binding and results in an inhibition of aryl hydrocarbon receptor-induced CYP1A1 enzyme. Both agents induce apoptosis via the Fas/FasL system.

Conclusions: Phenolic acids exert a direct antiproliferative action, evident at low concentrations, comparable with those found in biological fluids after ingestion of foods rich in phenolic acids. Furthermore, the direct interaction with the aryl hydrocarbon receptor, the nitric oxide synthase inhibition and their pro-apoptotic effect provide some insights into their biological mode of action.

Similar Articles

DNA repair, genome stability, and aging

Author(s): Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, et al.

A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes

Author(s): Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, et al.

Type 2 diabetes as an inflammatory disease

Author(s): Donath MY, Shoelson SE

Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters

Author(s): Bhathena J, Martoni C, Kulamarva A, Urbanska AM, Malhotra M, et al.

Lactobacillus fermentum NCIMB 5221 has a greater ferulic acid production compared to other ferulic acid esterase producing Lactobacilli

Author(s): Tomaro-Duchesneau C, Saha S, Malhotra M, Coussa-Charley M, Al-Salami H, et al.

Impact of Recent Increase in Incidence on Future Diabetes Burden: U.S., 2005-2050

Author(s): Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ

Screening of Lactic Acid Bacteria for Bile Salt Hydrolase Activity

Author(s): Tanaka H, Doesburg K, Iwasaki T, Mierau I

Ferulic Acid: therapeutic potential through its antioxidant property

Author(s): Srinivasan M, Sudheer AR, Menon VP

Protective effects of ferulic acid on hyperlipidemic diabetic rats

Author(s): Balasubashini MS, Rukkumani R, Menon VP

Ferulic acid alleviates lipid peroxidation in diabetic rats

Author(s): Balasubashini MS, Rukkumani R, Viswanathan P, Menon VP

Modulation of HER2 expression by ferulic acid on human breast cancer MCF7 cells

Author(s): Chang CJ, Chiu JH, Tseng LM, Chang CH, Chien TM, et al.

Glycosylated hemoglobins and long-term blood glucose control in diabetes mellitus

Author(s): Gabbay KH, Hasty K, Breslow JL, Ellison RC, Bunn HF, et al.