Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals

Author(s): Yang L, Zhou X, Luo Y, Sun X, Tang Y, et al.

Abstract

A number of studies have been performed to identify the association between potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) gene and type 2 diabetes mellitus (T2DM) in East Asian populations, with inconsistent results. The main aim of this work was to evaluate more precisely the genetic influence of KCNJ11 on T2DM in East Asian populations by means of a meta-analysis. We identified 20 articles for qualitative analysis and 16 were eligible for quantitative analysis (meta-analysis) by database searching up to May 2010. The association was assessed under different genetic models, and the pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. The allelic and genotypic contrast demonstrated that the association between KCNJ11 and T2DM was significant for rs5210. However, not all results for rs5215 and rs5218 showed significant associations. For rs5219, the combined ORs (95% CIs) for allelic contrast, dominant and recessive models contrast (with allelic frequency and genotypic distribution data) were 1.139 (1.093-1.188), 1.177 (1.099-1.259) and 1.207 (1.094-1.332), respectively (random effect model). The analysis on the most completely adjusted ORs (95% CIs) by the covariates of rs5219 all presented significant associations under different genetic models. Population-stratified analysis (Korean, Japanese and Chinese) and sensitivity analysis verified the significant results. Cumulative meta-analysis including publication time and sample size illustrated the exaggerated genetic effect in the earliest studies. Heterogeneity and publication bias were assessed. Our study verified that single nucleotide polymorphisms (SNPs) of KCNJ11 gene were significantly associated with the risk of T2DM in East Asian populations.

Similar Articles

Type 2 diabetes: principles of pathogenesis and therapy

Author(s): Stumvoll M, Goldstein BJ, van Haeften TW

Alternative therapies for type 2 diabetes

Author(s): Dey L, Attele AS, Yuan CS

Brussels, Belgium: International Diabetes Federation

Author(s): International Diabetes Federation

Global prevalence of diabetes: estimates for the year 2000 and projections for 2030

Author(s): Wild S, Roglic G, Green A, Sicree R, King H

Prevalence of diabetes in Pakistan

Author(s): Shera AS, Jawad F, Maqsood A

Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53: 2504-2508

Author(s): Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, et al.

A narrative insight to maturity-onset diabetes of the young

Author(s): Kanwal SF, Fazal S, Muhammad Ismail, Nighat Naureen

[MODY type diabetes: overview and recent findings]

Author(s): Ben Khelifa S, Barboura I, Dandana A, Ferchichi S, Miled A

HLA-A, -B, and -DR associations in type 1 diabetes mellitus with onset after age forty

Author(s): Pittman WB, Acton RT, Barger BO, Bell DS, Go RC, et al.

Latent autoimmune diabetes in adults (LADA) should be less latent

Author(s): Fourlanos S, Dotta F, Greenbaum CJ, Palmer JP, Rolandsson O, et al.

Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes

Author(s): Cervin C, Lyssenko V, Bakhtadze E, Lindholm E, Nilsson P, et al.

Genetics of type 2 diabetes

Author(s): Owen KR, McCarthy MI

The emerging genetic architecture of type 2 diabetes

Author(s): Doria A, Patti ME, Kahn CR

Genome-wide association studies in type 2 diabetes

Author(s): McCarthy MI, Zeggini E

Type 2 diabetes: new genes, new understanding

Author(s): Prokopenko I, McCarthy MI, Lindgren CM

Type 2 Diabetes Genetics: Beyond GWAS

Author(s): Sanghera DK, Blackett PR

A genome-wide association study identifies novel risk loci for type 2 diabetes

Author(s): Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al.

Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels

Author(s): Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, et al.

A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants

Author(s): Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al.

A variant in CDKAL1 influences insulin response and risk of type 2 diabetes

Author(s): Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, et al.

A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity

Author(s): Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al.

Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

Author(s): Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, et al.

Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci

Author(s): Saxena R, Elbers CC, Guo Y, Peter I, Gaunt TR, et al.

Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes

Author(s): Silander K, Mohlke KL, Scott LJ, Peck EC, Hollstein P, et al.

Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution

Author(s): Helgason A, Pálsson S, Thorleifsson G, Grant SF, Emilsson V, et al.

Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort

Author(s): van Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A, Strengman E, van Haeften TW, et al.

Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study

Author(s): van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, et al.

Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus

Author(s): Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, et al.

Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus

Author(s): Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, et al.

Inflammatory markers and risk of developing type 2 diabetes in women

Author(s): Hu FB, Meigs JB, Li TY, Rifai N, Manson JE

Therapy with oral antidiabetic drugs: applied pharmacogenetics

Author(s): Holstein A, Seeringer A, Kovacs P

Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action

Author(s): Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, et al.

Pharmacogenetics of Anti-Diabetes Drugs

Author(s): Distefano JK, Watanabe RM

Pharmacogenetics of oral antidiabetic treatment

Author(s): Schroner Z, Javorsky M, Kozarova M, Tkac I

Genetic basis of type 2 diabetes mellitus: implications for therapy

Author(s): Wolford JK, Vozarova de Courten B