Cardiac triglyceride accumulation following acute lipid excess occurs through activation of a FoxO1-iNOS-CD36 pathway

Author(s): Puthanveetil P, Wang Y, Zhang D, Wang F, Kim MS, et al.

Abstract

Obesity due to nutrient excess leads to chronic pathologies including type 2 diabetes and cardiovascular disease. Related to nutrient excess, FoxO1 has a role in regulating fatty acid uptake and oxidation and triglyceride (TG) storage by mechanisms that are largely unresolved. We examined the mechanism behind palmitate (PA)-induced TG accumulation in cardiomyocytes. To mimic lipid excess, rat ventricular myocytes were incubated with albumin-bound PA (1 mM) or rats were administered Intralipid (20%). PA-treated cardiomyocytes showed a substantial increase in TG accumulation, accompanied by amplification of nuclear migration of phospho-p38 and FoxO1, iNOS induction, and translocation of CD36 to the plasma membrane. PA also increased Cdc42 protein and its tyrosine nitration, thereby rearranging the cytoskeleton and facilitating CD36 translocation. These effects were duplicated by TNF-α and reversed by the iNOS inhibitor 1400 W. PA increased the nuclear interaction between FoxO1 and NF-κB, reduced the nuclear presence of PGC-1α, and downregulated expression of oxidative phosphorylation proteins. In vivo a robust increase in cardiac TGs after Intralipid administration was also associated with augmentation of nuclear FoxO1 and iNOS expression. Impeding this FoxO1-iNOS-CD36 pathway could decrease cardiac lipid accumulation and oxidative/nitrosative stress and help ameliorate the cardiovascular complications associated with obesity and diabetes.

Similar Articles

Diabetes and the risk of heart failure

Author(s): Dhingra R, Vasan RS

Pathophysiology of myocardial reperfusion

Author(s): Fox KA, Bergmann SR, Sobel BE

Chronic pharmacological preconditioning against ischemia

Author(s): Luca MC, Liuni A, Muxel S, Münzel T, Forconi S, et al.

Myocardial fatty acid metabolism in health and disease

Author(s): Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC

FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress

Author(s): Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE

FoxO, autophagy, and cardiac remodeling

Author(s): Ferdous A, Battiprolu PK, Ni YG, Rothermel BA, Hill JA

The FoxO family in cardiac function and dysfunction

Author(s): Ronnebaum SM, Patterson C

Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

Author(s): Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, et al.

Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1

Author(s): Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A, et al.

Altered acetylcholine and norepinephrine concentrations in diabetic rat hearts

Author(s): Akiyama N, Okumura K, Watanabe Y, Hashimoto H, Ito T, et al.

Glucose for the heart

Author(s): Depre C, Vanoverschelde JL, Taegtmeyer H

Hibernating myocardium

Author(s): Wijns W, Vatner SF, Camici PG

Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study

Author(s): Leung AA, Eurich DT, Lamb DA, Majumdar SR, Johnson JA, et al.

Phosphatases at the heart of FoxO metabolic control

Author(s): Tremblay ML, Giguère V

Adiponectin in the heart and vascular system

Author(s): Ding M, Rzucidlo EM, Davey JC, Xie Y, Liu R, et al.

The role of FoxO in the regulation of metabolism

Author(s): Gross DN, van den Heuvel AP, Birnbaum MJ

FoxO transcription factors; Regulation by AKT and 14-3-3 proteins

Author(s): Tzivion G, Dobson M, Ramakrishnan G

Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction

Author(s): Parisi Q, Biondi-Zoccai GG, Abbate A, Santini D, Vasaturo F, et al.

Silent information regulator 1 protects the heart from ischemia/reperfusion

Author(s): Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, et al.

Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase

Author(s): Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al.

Oxidative stress, nitric oxide, and diabetes

Author(s): Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, et al.

Potentiation of isosorbide dinitrate effects with N-acetylcysteine in patients with chronic heart failure

Author(s): Mehra A, Shotan A, Ostrzega E, Hsueh W, Vasquez-Johnson J, et al.

Influence of diabetes mellitus on heart failure risk and outcome

Author(s): Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, et al.

Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism

Author(s): Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, et al.

An essential role of the JAK-STAT pathway in ischemic preconditioning

Author(s): Xuan YT, Guo Y, Han H, Zhu Y, Bolli R

Preconditioning the diabetic heart: the importance of Akt phosphorylation

Author(s): Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM