Co-targeting insulin-like growth factor I receptor and HER2: dramatic effects of HER2 inhibitors on nonoverexpressing breast cancer

Author(s): Chakraborty AK, Liang K, DiGiovanna MP

Abstract

The insulin-like growth factor I receptor (IGFIR) and HER2 display important signaling interactions in breast cancer. We examined the effect of combinations of antagonists of these receptors using two human breast cancer cell lines: BT474 (HER2+, IGFIR low) and MCF7 (HER2 low, IGFIR high). In BT474 cells, growth was inhibited by HER2 antagonists but not by IGFIR antagonists; however, IGFIR antagonists enhanced the effect of HER2 inhibitors. In MCF7 cells, growth was inhibited by IGFIR antagonists but not by HER2 antagonists; however, HER2 antagonism enhanced the effect of IGFIR inhibitors. Synergistic inhibition of soft agar growth was also observed. Although HER2 and IGFIR antagonists individually only minimally affected cell cycle, their combination gave a small enhancement of their effects. No single receptor-targeting drug was capable of inducing apoptosis, but combining antagonists of both receptors induced a dramatic degree of apoptosis in both cell lines. Induction of apoptosis was most striking in MCF7 cells using a Herceptin/IGFIR antagonist combination despite these cells being HER2 nonoverexpressing. Toward understanding the mechanism of these effects, we detected coassociation IGFIR and HER2 in both cell lines. Specific inhibitors of one of these receptors could cross-inhibit the activity of the other. Targeting both receptors gave the maximal inhibition of their downstream extracellular signal-regulated kinase 1/2 and AKT signaling pathways. Hence, such drug combinations may be clinically useful and may be beneficial even in tumors in which single drugs are inactive, as exemplified by the effect of the HER2/IGFIR inhibitor combination in HER2 nonoverexpressing MCF7 cells.

Similar Articles

Fetal alcohol spectrum disorders: an overview

Author(s): Riley EP, Infante MA, Warren KR

Regulation of neuronal survival by the serine-threonine protein kinase Akt

Author(s): Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, et al.

Ethanol inhibition of insulin signaling in hepatocellular carcinoma cells

Author(s): Banerjee K, Mohr L, Wands JR, de la Monte SM

Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase

Author(s): de la Monte SM, Ganju N, Banerjee K, Brown NV, Luong T, et al.

Acute ethanol exposure inhibits insulin signaling in the liver

Author(s): He J, de la Monte S, Wands JR

Potential role of PTEN phosphatase in ethanol-impaired survival signaling in the liver

Author(s): Yeon JE, Califano S, Xu J, Wands JR, De La Monte SM

Frizzled signaling and the developmental control of cell polarity

Author(s): Shulman JM, Perrimon N, Axelrod JD

Roles of Wnt proteins in neural development and maintenance

Author(s): Patapoutian A, Reichardt LF

Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1

Author(s): Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R

Wnt signalling required for expansion of neural crest and CNS progenitors

Author(s): Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S

Wnt signaling regulates hepatic metabolism

Author(s): Liu H, Fergusson MM, Wu JJ, Rovira II, Liu J, et al.

Wnt signaling regulates mitochondrial physiology and insulin sensitivity

Author(s): Yoon JC, Ng A, Kim BH, Bianco A, Xavier RJ, et al.

Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1)

Author(s): Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, et al.

Deconstructing the ßcatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling

Author(s): Roberts DM, Pronobis MI, Poulton JS, Waldmann JD, Stephenson EM, et al.

Notch in the vertebrate nervous system: an old dog with new tricks

Author(s): Pierfelice T, Alberi L, Gaiano N

Notch targets and their regulation

Author(s): Bray S, Bernard F

Roles of bHLH genes in neural stem cell differentiation

Author(s): Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R

Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma

Author(s): Lavaissiere L, Jia S, Nishiyama M, de la Monte S, Stern AM, et al.

Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness

Author(s): de la Monte SM, Tamaki S, Cantarini MC, Ince N, Wiedmann M, et al.

Impaired placentation in fetal alcohol syndrome

Author(s): Gundogan F, Elwood G, Longato L, Tong M, Feijoo A, et al.

Role of the aspartyl-asparaginyl-beta-hydroxylase gene in neuroblastoma cell motility

Author(s): Sepe PS, Lahousse SA, Gemelli B, Chang H, Maeda T, et al.

AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis

Author(s): Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, et al.

Wnt signaling function in Alzheimer's disease

Author(s): De Ferrari GV, Inestrosa NC