Current understanding of placental fatty acid transport

Author(s): Gil-Sánchez A, Koletzko B, Larqué E

Abstract

Purpose of review: The amount and activity of placental enzymes, receptors, and transport proteins will determine the extent of lipid transfer to the fetus that strongly contributes to fetal fat accretion.

Recent findings: Several studies have shown an association between the percentage of maternal plasma docosahexaenoic acid during gestation and the development of cognitive functions in the neonate. The functionality of the placenta could affect neonatal adiposity and fetal levels of long-chain polyunsaturated fatty acids in the offspring.

Summary: Both in-vitro and human in-vivo studies using labeled fatty acids (FAs) reported a preferential placental-fetal transfer of long-chain polyunsaturated fatty acids, although the mechanisms are still uncertain. The placenta uptakes the maternal circulating nonesterified fatty acids (NEFAs) and FAs released by maternal lipoprotein lipase and endothelial lipase. These NEFAs enter the cell through passive diffusion or by membrane carrier proteins. NEFAs bind to cytosolic fatty-acid-binding proteins to interact with subcellular organelles, including the endoplasmic reticulum, mitochondria, lipid droplets and peroxisomes. Knowledge about FA metabolism and adaptations in response to obesity or diabetes in human placenta is more limited, and contradictory results are available in their influence on placental lipases and carriers.

Similar Articles

Triglyceride metabolism in pregnancy

Author(s): Ghio A, Bertolotto A, Resi V, Volpe L, Di Cianni G

Energy metabolism during human pregnancy

Author(s): Forsum E, Löf M

Clinical and biochemical features of fatty acid oxidation disorders

Author(s): Rinaldo P, Raymond K, al-Odaib A, Bennett MJ

Plasma carnitine levels of pregnant adolescents in labor

Author(s): Koumantakis E, Sifakis S, Koumantaki Y, Hassan E, Matalliotakis I, et al.

Pregnancy-related changes of carnitine and acylcarnitine concentrations of plasma and erythrocytes

Author(s): Schoderbeck M, Auer B, Legenstein E, Genger H, Sevelda P, et al.

Carnitine status and lactate increase in patients with type I juvenile diabetes

Author(s): Evangeliou A, Gourgiotis D, Karagianni C, Markouri M, Anogianaki N, et al.

The effect of the mode of delivery on the maternal-neonatal carnitine blood levels and antioxidant status

Author(s): Schulpis KH, Papakonstantinou ED, Vlachos GD, Vlachos DG, Antsaklis A, et al.

Maternal lipid metabolism and placental lipid transfer

Author(s): Herrera E, Amusquivar E, López-Soldado I, Ortega H

Blood ketone monitoring: a comparison between gestational diabetes and non-diabetic pregnant women

Author(s): Gin H, Vambergue A, Vasseur C, Rigalleau V, Dufour P, et al.

Determination of free L-carnitine levels in type II diabetic women with and without complications

Author(s): Poorabbas A, Fallah F, Bagdadchi J, Mahdavi R, Aliasgarzadeh A, et al.

Oxidative metabolism in insulin-treated gestational diabetes mellitus

Author(s): Hsu HW, Butte NF, Wong WW, Moon JK, Ellis KJ, et al.

Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta

Author(s): Grube M, Meyer Zu Schwabedissen H, Draber K, Präger D, Möritz KU, et al.

High activity of fatty acid oxidation enzymes in human placenta: implications for fetal-maternal disease

Author(s): Oey NA, den Boer ME, Ruiter JP, Wanders RJ, Duran M, et al.

Long-chain fatty acid oxidation during early human development

Author(s): Oey NA, den Boer ME, Wijburg FA, Vekemans M, Augé J, et al.