Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents

Author(s): Petersen KF, Dufour S, Shulman GI


Background: Insulin resistance is the best predictor for the development of type 2 diabetes. Recent studies have shown that young, lean, insulin-resistant (IR) offspring of parents with type 2 diabetes have reduced basal rates of muscle mitochondrial phosphorylation activity associated with increased intramyocellular lipid (IMCL) content, which in turn blocks insulin signaling and insulin action in muscle. In order to further characterize mitochondrial activity in these individuals, we examined insulin-stimulated rates of adenosine triphosphate (ATP) synthesis and phosphate transport in skeletal muscle in a similar cohort of participants.

Methods and findings: Rates of insulin-stimulated muscle mitochondrial ATP synthase flux and insulin-stimulated increases in concentrations of intramyocellular inorganic phosphate (Pi) were assessed by 31P magnetic resonance spectroscopy (MRS) in healthy, lean, IR offspring of parents with type 2 diabetes and healthy, lean control participants with normal insulin sensitivity. IMCL content in the soleus muscle of all participants was assessed by 1H MRS. During a hyperinsulinemic-euglycemic clamp, rates of insulin-stimulated glucose uptake were decreased by approximately 50% in the IR offspring compared to the control participants (p = 0.007 versus controls) and were associated with an approximately 2-fold increase in IMCL content (p < 0.006 versus controls). In the control participants rates of ATP synthesis increased by approximately 90% during the hyperinsulinemic-euglycemic clamp. In contrast, insulin-stimulated rates of muscle mitochondrial ATP synthesis increased by only 5% in the IR offspring (p = 0.001 versus controls) and was associated with a severe reduction of insulin-stimulated increases in the intramyocellular Pi concentrations (IR offspring: 4.7% +/- 1.9% versus controls: 19.3% +/- 5.7%; p = 0.03). Insulin-induced increases in intramyocellular Pi concentrations correlated well with insulin-stimulated increases in rates of ATP synthesis (r = 0.67; p = 0.008).

Conclusions: These data demonstrate that insulin-stimulated rates of mitochondrial ATP synthesis are reduced in IR offspring of parents with type 2 diabetes. Furthermore, these IR offspring also have impaired insulin-stimulated phosphate transport in muscle, which may contribute to their defects in insulin-stimulated rates of mitochondrial ATP synthesis.

Similar Articles

Membranes as possible pacemakers of metabolism

Author(s): Hulbert AJ, Else PL

Life, death and membrane bilayers

Author(s): Hulbert AJ

Quantitative atomic force microscopy with carbon monoxide terminated tips

Author(s): Sun Z, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P

Structure of lipid bilayers

Author(s): Nagle JF, Tristram-Nagle S

The cellular fate of glucose and its relevance in type 2 diabetes

Author(s): Bouché C, Serdy S, Kahn CR, Goldfine AB

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Relationship between carnitine, fatty acids and insulin resistance

Author(s): Lohninger A, Radler U, Jinniate S, Lohninger S, Karlic H, et al.

Is irisin a human exercise gene? Nature 488: E9-10

Author(s): Timmons JA, Baar K, Davidsen PK, Atherton PJ

FNDC5 and irisin in humans: I

Author(s): Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, et al.

MR properties of brown and white adipose tissues

Author(s): Hamilton G, Smith DL Jr, Bydder M, Nayak KS, Hu HH

Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance

Author(s): Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, et al.

Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin

Author(s): Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al.

Hemorheological disorders in diabetes mellitus

Author(s): Cho YI, Mooney MP, Cho DJ

Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol

Author(s): Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM