Diabetes abolishes the cardioprotection induced by sevoflurane postconditioning in the rat heart in vivo: roles of glycogen synthase kinase-3ß and its upstream pathways

Author(s): Tai W, Shi E, Yan L, Jiang X, Ma H, et al.


Background: We measured the cardioprotection afforded by sevoflurane postconditioning in streptozotocin-induced diabetic rats (DRs) and determined the roles of glycogen synthase kinase (GSK), phosphatidylinositol-3-kinase/Akt, and extracellular signal-regulated kinase (ERK1/2) in such a procedure.

Methods: DRs and nondiabetic rats (NDRs) were subjected to a 30-min coronary artery occlusion followed by a 120-min reperfusion. Postconditioning was achieved by inhalation of 1 minimum alveolar concentration sevoflurane at the first 5 min of reperfusion. The infarct size was determined by triphenyltetrazolium chloride staining. Expressions of GSK-3β, Akt, and ERK1/2 were measured using Western blotting.

Results: In NDRs, the infarct size was significantly decreased from 53.4% ± 7.6% to 34.9% ± 5.6% by sevoflurane postconditioning (P < 0.01). Such an anti-infarct effect was abolished completely in the DRs, as evidenced by a similar infarct size observed between the sevoflurane-treated and untreated DRs (49.3% ± 8.6% and 49.6% ± 9.3%, respectively, P > 0.05). Direct inhibition of GSK-3β by injection of SB216763 just before the start of reperfusion induced equivalent infarct-sparing effects in both NDRs (37.8% ± 3.9% and 53.4% ± 7.6% in SB216763-treated and untreated NDRs, respectively; P < 0.01) and DRs (38.8% ± 3.2% and 49.3% ± 8.6% in SB216763-treated and untreated DRs, respectively; P < 0.05). Sevoflurane postconditioning remarkably enhanced the phosphorylation of GSK-3β Ser(9), Akt Ser(473), and ERK1/2 in NDRs, which were blocked in DRs.

Conclusions: The cardioprotection induced by sevoflurane postconditioning is abolished by diabetes. This might be due to the impairment of phosphorylation of GSK-3β and its upstream signaling pathways of phosphatidylinositol-3-kinase/Akt and ERK1/2 in the presence of diabetes.

Similar Articles

Diabetes and the risk of heart failure

Author(s): Dhingra R, Vasan RS

Pathophysiology of myocardial reperfusion

Author(s): Fox KA, Bergmann SR, Sobel BE

Chronic pharmacological preconditioning against ischemia

Author(s): Luca MC, Liuni A, Muxel S, Münzel T, Forconi S, et al.

Myocardial fatty acid metabolism in health and disease

Author(s): Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC

FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress

Author(s): Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE

FoxO, autophagy, and cardiac remodeling

Author(s): Ferdous A, Battiprolu PK, Ni YG, Rothermel BA, Hill JA

The FoxO family in cardiac function and dysfunction

Author(s): Ronnebaum SM, Patterson C

Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

Author(s): Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, et al.

Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1

Author(s): Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A, et al.

Altered acetylcholine and norepinephrine concentrations in diabetic rat hearts

Author(s): Akiyama N, Okumura K, Watanabe Y, Hashimoto H, Ito T, et al.

Glucose for the heart

Author(s): Depre C, Vanoverschelde JL, Taegtmeyer H

Hibernating myocardium

Author(s): Wijns W, Vatner SF, Camici PG

Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study

Author(s): Leung AA, Eurich DT, Lamb DA, Majumdar SR, Johnson JA, et al.

Phosphatases at the heart of FoxO metabolic control

Author(s): Tremblay ML, Giguère V

Adiponectin in the heart and vascular system

Author(s): Ding M, Rzucidlo EM, Davey JC, Xie Y, Liu R, et al.

The role of FoxO in the regulation of metabolism

Author(s): Gross DN, van den Heuvel AP, Birnbaum MJ

FoxO transcription factors; Regulation by AKT and 14-3-3 proteins

Author(s): Tzivion G, Dobson M, Ramakrishnan G

Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction

Author(s): Parisi Q, Biondi-Zoccai GG, Abbate A, Santini D, Vasaturo F, et al.

Silent information regulator 1 protects the heart from ischemia/reperfusion

Author(s): Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, et al.

Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase

Author(s): Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al.

Oxidative stress, nitric oxide, and diabetes

Author(s): Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, et al.

Potentiation of isosorbide dinitrate effects with N-acetylcysteine in patients with chronic heart failure

Author(s): Mehra A, Shotan A, Ostrzega E, Hsueh W, Vasquez-Johnson J, et al.

Influence of diabetes mellitus on heart failure risk and outcome

Author(s): Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, et al.

Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism

Author(s): Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, et al.

An essential role of the JAK-STAT pathway in ischemic preconditioning

Author(s): Xuan YT, Guo Y, Han H, Zhu Y, Bolli R

Preconditioning the diabetic heart: the importance of Akt phosphorylation

Author(s): Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM