Author(s): de Roos B, Rucklidge G, Reid M, Ross K, Duncan G, et al.
Conjugated linoleic acids (CLA) affect atherogenesis, but mechanisms are not well understood. We explored how two isomers of CLA, cis9, trans11-CLA and trans10, cis12-CLA, affected lipid and glucose metabolism, as well as hepatic protein expression, in apolipoprotein E knockout mice. After 12 wk of intervention, plasma triglyceride, NEFA, and glucose concentrations were significantly higher in the trans10, cis12-CLA group, whereas plasma triglyceride, NEFA, glucose, and insulin concentrations were significantly lower in the cis9, trans11-CLA group, compared with control mice consuming linoleic acid. Proteomics identified significant up- or down-regulation of 113 liver cytosolic proteins by either CLA isomer. Principal component analysis revealed that the treatment effect of cis9, trans11-CLA was mainly explained by the up-regulation of different posttranslational forms of heat shock protein 70 kD. In contrast, the treatment effect of trans10, cis12-CLA was mainly explained by up-regulation of key enzymes in the gluconeogenic, beta-oxidation, and ketogenesic pathways. Correlation analysis again emphasized the divergent effects of both CLA isomers on different pathways, but also revealed a linkage between insulin resistance and increased levels of hepatic serotransferrin. Thus, our systems biology approach provided novel insights into the mechanisms by which individual CLA isomers differentially affect pathways related to atherogenesis, such as insulin resistance and inflammation.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/16055499
Author(s): Rice-Evans CA, Miller NJ, Paganga G
Author(s): Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, et al.
Author(s): Hu CT, Wu JR, Cheng CC, Wang S, Wang HT, et al.
Author(s): Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, et al.
Author(s): Sonta T, Inoguchi T, Tsubouchi H, Sekiguchi N, Kobayashi K, et al.
Author(s): Donath MY, Shoelson SE
Author(s): Bhathena J, Kulamarva A, Urbanska AM, Martoni C, Prakash S
Author(s): Bhathena J, Kulamarva A, Martoni C, Urbanska AM, Prakash S
Author(s): Bhathena J, Martoni C, Kulamarva A, Urbanska AM, Malhotra M, et al.
Author(s): Tomaro-Duchesneau C, Saha S, Malhotra M, Coussa-Charley M, Al-Salami H, et al.
Author(s): Tomaro-Duchesneau C, Saha S, Malhotra M, Coussa-Charley M, Kahouli I, et al.
Author(s): Lai KK, Lorcan GL, Gonzalez CF
Author(s): Prakash S, Tomaro-Duchesneau C, Saha S, Cantor A
Author(s): Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ
Author(s): Adisakwattana S, Moonsan P, Yibchok-anun S
Author(s): Taylor BA, Phillips SJ
Author(s): Martoni C, Bhathena J, Urbanska AM, Prakash S
Author(s): Tanaka H, Doesburg K, Iwasaki T, Mierau I
Author(s): Pfeiler EA, Klaenhammer TR
Author(s): Srinivasan M, Sudheer AR, Menon VP
Author(s): Balasubashini MS, Rukkumani R, Menon VP
Author(s): Balasubashini MS, Rukkumani R, Viswanathan P, Menon VP
Author(s): Atsuyo F, Hideyuki S, Asako D, Kunihisa O, Shohei M, et al.
Author(s): Chang CJ, Chiu JH, Tseng LM, Chang CH, Chien TM, et al.
Author(s): Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, et al.
Author(s): Lee YS
Author(s): Taniguchi H, Hosoda A, Tsuno T, Maruta Y, Nomura E
Author(s): Lesca P
Author(s): Tanaka T, Kojima T, Kawamori T, Wang A, Suzui M, et al.
Author(s): Zhao Z, Egashira Y, Sanada H
Author(s): UK Prospective Diabetes Study Group
Author(s): Gabbay KH, Hasty K, Breslow JL, Ellison RC, Bunn HF, et al.
Author(s): Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, et al.
Author(s): Dagogo-Jack S
Author(s): Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, et al.
Author(s): Aronson D, Rayfield EJ
Author(s): Schalkwijk CG, Miyata T