Effects of N-acetylcysteine in the rat heart reperfused after low-flow ischemia: evidence for a direct scavenging of hydroxyl radicals and a nitric oxide-dependent increase in coronary flow

Author(s): Brunet J, Boily MJ, Cordeau S, Des Rosiers C

Abstract

The capacity of N-acetylcysteine to directly scavenge hydroxyl radical produced by rat hearts reperfused after 90 min of low-flow ischemia was assessed by the hydroxylation of 4-hydroxybenzoate into 3,4-dihydroxybenzoate using a gas chromatography-mass spectrometric assay. Reperfused hearts showed a massive release of 3,4-dihydroxybenzoate, lactate dehydrogenase, and total glutathione, contained less reduced and oxidized glutathione, but maintained spontaneous beating and coronary flow rates close to preischemic values. Compared to untreated hearts: reperfused hearts treated with N-acetylcysteine from the start of ischemia (i) released four times less 3,4-dihydroxybenzoate, but similar amounts of lactate dehydrogenase or glutathione, (ii) showed a nitric oxide-dependent increase in coronary flow rate, and (iii) contained less oxidized glutathione, but similar amounts of reduced glutathione. Reperfused hearts receiving N-acetylcysteine since the last 5 min of ischemia had also a four-times lower 3,4-dihydroxybenzoate release, but their coronary flow rate response was similar to that of untreated hearts. These results indicate that N-acetylcysteine can directly scavenge hydroxyl radicals produced by reperfused ischemic hearts, although this effect is not associated with any protective effects as indicated by the lactate dehydrogenase and glutathione release and cannot explain the nitric oxide-dependent reperfusion hyperemia.

Similar Articles

Diabetes and the risk of heart failure

Author(s): Dhingra R, Vasan RS

Pathophysiology of myocardial reperfusion

Author(s): Fox KA, Bergmann SR, Sobel BE

Chronic pharmacological preconditioning against ischemia

Author(s): Luca MC, Liuni A, Muxel S, Münzel T, Forconi S, et al.

Myocardial fatty acid metabolism in health and disease

Author(s): Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC

FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress

Author(s): Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE

FoxO, autophagy, and cardiac remodeling

Author(s): Ferdous A, Battiprolu PK, Ni YG, Rothermel BA, Hill JA

The FoxO family in cardiac function and dysfunction

Author(s): Ronnebaum SM, Patterson C

Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

Author(s): Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, et al.

Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1

Author(s): Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A, et al.

Altered acetylcholine and norepinephrine concentrations in diabetic rat hearts

Author(s): Akiyama N, Okumura K, Watanabe Y, Hashimoto H, Ito T, et al.

Glucose for the heart

Author(s): Depre C, Vanoverschelde JL, Taegtmeyer H

Hibernating myocardium

Author(s): Wijns W, Vatner SF, Camici PG

Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study

Author(s): Leung AA, Eurich DT, Lamb DA, Majumdar SR, Johnson JA, et al.

Phosphatases at the heart of FoxO metabolic control

Author(s): Tremblay ML, Giguère V

Adiponectin in the heart and vascular system

Author(s): Ding M, Rzucidlo EM, Davey JC, Xie Y, Liu R, et al.

The role of FoxO in the regulation of metabolism

Author(s): Gross DN, van den Heuvel AP, Birnbaum MJ

FoxO transcription factors; Regulation by AKT and 14-3-3 proteins

Author(s): Tzivion G, Dobson M, Ramakrishnan G

Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction

Author(s): Parisi Q, Biondi-Zoccai GG, Abbate A, Santini D, Vasaturo F, et al.

Silent information regulator 1 protects the heart from ischemia/reperfusion

Author(s): Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, et al.

Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase

Author(s): Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al.

Oxidative stress, nitric oxide, and diabetes

Author(s): Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, et al.

Potentiation of isosorbide dinitrate effects with N-acetylcysteine in patients with chronic heart failure

Author(s): Mehra A, Shotan A, Ostrzega E, Hsueh W, Vasquez-Johnson J, et al.

Influence of diabetes mellitus on heart failure risk and outcome

Author(s): Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, et al.

Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism

Author(s): Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, et al.

An essential role of the JAK-STAT pathway in ischemic preconditioning

Author(s): Xuan YT, Guo Y, Han H, Zhu Y, Bolli R

Preconditioning the diabetic heart: the importance of Akt phosphorylation

Author(s): Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM