Endogenous production of lipoic acid is essential for mouse development

Author(s): Yi X, Maeda N


alpha-Lipoic acid (LA) is a cofactor for mitochondrial alpha-ketoacid dehydrogenase complexes and is one of the most potent, natural antioxidants. Reduction of oxidative stress by LA supplementation has been demonstrated in patients with diabetic neuropathy and in animal models. To determine how normal development or pathological conditions are affected by genetic alterations in the ability of mammalian cells to synthesize LA and whether dietary LA can circumvent its endogenous absence, we have generated mice deficient in lipoic acid synthase (Lias). Mice heterozygous for disruption of the Lias gene develop normally, and their plasma levels of thiobarbituric acid-reactive substances do not differ from those of wild-type mice. However, the heterozygotes have significantly reduced erythrocyte glutathione levels, indicating that their endogenous antioxidant capacity is lower than those of wild-type mice. Homozygous embryos lacking Lias appear healthy at the blastocyst stage, but their development is retarded globally by 7.5 days postcoitum (dpc), and all the null embryos die before 9.5 dpc. Supplementing the diet of heterozygous mothers with LA (1.65 g/kg of body weight) during pregnancy fails to prevent the prenatal deaths of homozygous embryos. Thus, endogenous LA synthesis is essential for developmental survival and cannot be replaced by LA in maternal tissues and blood.

Similar Articles

Mitochondrial dysfunction in obesity

Author(s): Bournat JC, Brown CW

Increased oxidative stress in obesity and its impact on metabolic syndrome

Author(s): Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al.

Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress

Author(s): Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM

Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats

Author(s): Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, et al.

Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport

Author(s): Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Barber A, Martínez JA, et al.

Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice

Author(s): Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, et al.

Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes

Author(s): Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaïdi-Tiali N

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice

Author(s): Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, et al.

Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways

Author(s): Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, et al.

A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene

Author(s): Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al.

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Oxidative capacity and aging in human muscle

Author(s): Conley KE, Jubrias SA, Esselman PC

Mitochondrial function and apoptotic susceptibility in aging skeletal muscle

Author(s): Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, et al.

Excessive loss of skeletal muscle mass in older adults with type 2 diabetes

Author(s): Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, et al.