Ethanol inhibition of aspartyl-asparaginyl-beta-hydroxylase in fetal alcohol spectrum disorder: potential link to the impairments in central nervous system neuronal migration

Author(s): de la Monte SM, Tong M, Carlson RI, Carter JJ, Longato L, et al.

Abstract

Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to alcohol and associated with hypoplasia and impaired neuronal migration in the cerebellum. Neuronal survival and motility are stimulated by insulin and insulin-like growth factor (IGF), whose signaling pathways are major targets of ethanol neurotoxicity. To better understand the mechanisms of ethanol-impaired neuronal migration during development, we examined the effects of chronic gestational exposure to ethanol on aspartyl (asparaginyl)-beta-hydroxylase (AAH) expression, because AAH is regulated by insulin/IGF and mediates neuronal motility. Pregnant Long-Evans rats were pair-fed isocaloric liquid diets containing 0, 8, 18, 26, or 37% ethanol by caloric content from gestation day 6 through delivery. Cerebella harvested from postnatal day 1 pups were used to examine AAH expression in tissue, and neuronal motility in Boyden chamber assays. We also used cerebellar neuron cultures to examine the effects of ethanol on insulin/IGF-stimulated AAH expression, and assess the role of GSK-3beta-mediated phosphorylation on AAH protein levels. Chronic gestational exposure to ethanol caused dose-dependent impairments in neuronal migration and corresponding reductions in AAH protein expression in developing cerebella. In addition, prenatal ethanol exposure inhibited insulin and IGF-I-stimulated directional motility in isolated cerebellar granule neurons. Ethanol-treated neuronal cultures (50mMx96h) also had reduced levels of AAH protein. Mechanistically, we showed that AAH protein could be phosphorylated on Ser residues by GSK-3beta, and that chemical inhibition of GSK-3beta and/or global Caspases increases AAH protein in both control- and ethanol-exposed cells. Ethanol-impaired neuronal migration in FASD is associated with reduced AAH expression. Because ethanol increases the activities of both GSK-3beta and Caspases, the inhibitory effect of ethanol on neuronal migration could be mediated by increased GSK-3beta phosphorylation and Caspase degradation of AAH protein.

Similar Articles

Fetal alcohol spectrum disorders: an overview

Author(s): Riley EP, Infante MA, Warren KR

Regulation of neuronal survival by the serine-threonine protein kinase Akt

Author(s): Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, et al.

Ethanol inhibition of insulin signaling in hepatocellular carcinoma cells

Author(s): Banerjee K, Mohr L, Wands JR, de la Monte SM

Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase

Author(s): de la Monte SM, Ganju N, Banerjee K, Brown NV, Luong T, et al.

Acute ethanol exposure inhibits insulin signaling in the liver

Author(s): He J, de la Monte S, Wands JR

Potential role of PTEN phosphatase in ethanol-impaired survival signaling in the liver

Author(s): Yeon JE, Califano S, Xu J, Wands JR, De La Monte SM

Frizzled signaling and the developmental control of cell polarity

Author(s): Shulman JM, Perrimon N, Axelrod JD

Roles of Wnt proteins in neural development and maintenance

Author(s): Patapoutian A, Reichardt LF

Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1

Author(s): Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R

Wnt signalling required for expansion of neural crest and CNS progenitors

Author(s): Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S

Wnt signaling regulates hepatic metabolism

Author(s): Liu H, Fergusson MM, Wu JJ, Rovira II, Liu J, et al.

Wnt signaling regulates mitochondrial physiology and insulin sensitivity

Author(s): Yoon JC, Ng A, Kim BH, Bianco A, Xavier RJ, et al.

Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1)

Author(s): Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, et al.

Deconstructing the ßcatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling

Author(s): Roberts DM, Pronobis MI, Poulton JS, Waldmann JD, Stephenson EM, et al.

Notch in the vertebrate nervous system: an old dog with new tricks

Author(s): Pierfelice T, Alberi L, Gaiano N

Notch targets and their regulation

Author(s): Bray S, Bernard F

Roles of bHLH genes in neural stem cell differentiation

Author(s): Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R

Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma

Author(s): Lavaissiere L, Jia S, Nishiyama M, de la Monte S, Stern AM, et al.

Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness

Author(s): de la Monte SM, Tamaki S, Cantarini MC, Ince N, Wiedmann M, et al.

Impaired placentation in fetal alcohol syndrome

Author(s): Gundogan F, Elwood G, Longato L, Tong M, Feijoo A, et al.

Role of the aspartyl-asparaginyl-beta-hydroxylase gene in neuroblastoma cell motility

Author(s): Sepe PS, Lahousse SA, Gemelli B, Chang H, Maeda T, et al.

AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis

Author(s): Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, et al.

Wnt signaling function in Alzheimer's disease

Author(s): De Ferrari GV, Inestrosa NC