Author(s): Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, et al.
A series of synthetic triterpenoid (TP) analogues of oleanolic acid are powerful inhibitors of cellular inflammatory processes such as the induction by IFN-gamma of inducible nitric oxide synthase (iNOS) and of cyclooxygenase 2 in mouse macrophages. Here, we show that these analogues are also extremely potent inducers of the phase 2 response [e.g., elevation of NAD(P)H-quinone oxidoreductase and heme oxygenase 1], which is a major protector of cells against oxidative and electrophile stress. Moreover, like previously identified phase 2 inducers, the TP analogues use the antioxidant response element-Nrf2-Keap1 signaling pathway. Thus, induction of the phase 2 response and suppression of the iNOS induction was abrogated in nrf2(-/-) and keap1(-/-) mouse embryonic fibroblasts. The high potency of TP analogues in inducing the phase 2 response and blocking inflammation depends on the presence of activated Michael reaction (enone) functions at critical positions in rings A and C. The most potent TP doubles NAD(P)H-quinone oxidoreductase in murine hepatoma cells at 0.28 nM and has an IC(50) for suppression of iNOS induction in primary mouse macrophages of 0.0035 nM. The direct interaction of this TP with thiol groups of the Keap1 sensor for inducers is demonstrated spectroscopically. The antiinflammatory and phase 2 inducer potencies of 18 TP are closely linearly correlated (r(2) = 0.91) over 6 orders of magnitude of concentration. Thus, in addition to blocking inflammation and promoting differentiation, these TP exhibit another very important protective property: the induction of the phase 2 response.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/15767573
Author(s): Zimmet P, Alberti KG, Shaw J
Author(s): Murarka S, Movahed MR
Author(s): Khavandi K, Khavandi A, Asghar O, Greenstein A, Withers S, et al.
Author(s): Francis GS
Author(s): Giacco F, Brownlee M
Author(s): Baynes JW, Thorpe SR
Author(s): Brownlee M
Author(s): Cai L, Kang YJ
Author(s): Cai L, Wang J, Li Y, Sun X, Wang L, et al.
Author(s): He X, Kan H, Cai L, Ma Q
Author(s): Kensler TW, Wakabayashi N, Biswal S
Author(s): Leung L, Kwong M, Hou S, Lee C, Chan JY
Author(s): Ma Q
Author(s): Talalay P, Dinkova-Kostova AT, Holtzclaw WD
Author(s): Kobayashi A, Ohta T, Yamamoto M
Author(s): Nguyen T, Sherratt PJ, Pickett CB
Author(s): Ma Q, Battelli L, Hubbs AF
Author(s): Hubbs AF, Benkovic SA, Miller DB, O'Callaghan JP, Battelli L, et al.
Author(s): Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, et al.
Author(s): He X, Lin GX, Chen MG, Zhang JX, Ma Q
Author(s): He X, Chen MG, Ma Q
Author(s): Hu X, Roberts JR, Apopa PL, Kan YW, Ma Q
Author(s): Cho HY, Reddy SP, Yamamoto M, Kleeberger SR
Author(s): He X, Chen MG, Lin GX, Ma Q
Author(s): He X, Ma Q
Author(s): He X, Ma Q
Author(s): Taguchi K, Motohashi H, Yamamoto M
Author(s): Chan K, Lu R, Chang JC, Kan YW
Author(s): Ma Q, Kinneer K, Bi Y, Chan JY, Kan YW
Author(s): Kan H, Xie Z, Finkel MS
Author(s): Dobrin JS, Lebeche D
Author(s): Duncan JG
Author(s): Yates MS, Kwak MK, Egner PA, Groopman JD, Bodreddigari S, et al.
Author(s): Liby K, Royce DB, Williams CR, Risingsong R, Yore MM, et al.
Author(s): Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, et al.