Hemorheological disorders in diabetes mellitus

Author(s): Cho YI, Mooney MP, Cho DJ

Abstract

The objective of the present study is to review hemorheological disorders in diabetes mellitus. Several key hemorheological parameters, such as whole blood viscosity, erythrocyte deformability, and aggregation, are examined in the context of elevated blood glucose level in diabetes. The erythrocyte deformability is reduced, whereas its aggregation increases, both of which make whole blood more viscous compared to healthy individuals. The present paper explains how the increased blood viscosity adversely affects the microcirculation in diabetes, leading to microangiopathy.

Similar Articles

Membranes as possible pacemakers of metabolism

Author(s): Hulbert AJ, Else PL

Life, death and membrane bilayers

Author(s): Hulbert AJ

Quantitative atomic force microscopy with carbon monoxide terminated tips

Author(s): Sun Z, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P

Structure of lipid bilayers

Author(s): Nagle JF, Tristram-Nagle S

The cellular fate of glucose and its relevance in type 2 diabetes

Author(s): Bouché C, Serdy S, Kahn CR, Goldfine AB

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Relationship between carnitine, fatty acids and insulin resistance

Author(s): Lohninger A, Radler U, Jinniate S, Lohninger S, Karlic H, et al.

Is irisin a human exercise gene? Nature 488: E9-10

Author(s): Timmons JA, Baar K, Davidsen PK, Atherton PJ

FNDC5 and irisin in humans: I

Author(s): Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, et al.

MR properties of brown and white adipose tissues

Author(s): Hamilton G, Smith DL Jr, Bydder M, Nayak KS, Hu HH

Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance

Author(s): Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, et al.

Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin

Author(s): Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al.

Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol

Author(s): Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM