In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes

Author(s): Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, et al.

Abstract

The low number of CD4+ CD25+ regulatory T cells (Tregs), their anergic phenotype, and diverse antigen specificity present major challenges to harnessing this potent tolerogenic population to treat autoimmunity and transplant rejection. In this study, we describe a robust method to expand antigen-specific Tregs from autoimmune-prone nonobese diabetic mice. Purified CD4+ CD25+ Tregs were expanded up to 200-fold in less than 2 wk in vitro using a combination of anti-CD3, anti-CD28, and interleukin 2. The expanded Tregs express a classical cell surface phenotype and function both in vitro and in vivo to suppress effector T cell functions. Most significantly, small numbers of antigen-specific Tregs can reverse diabetes after disease onset, suggesting a novel approach to cellular immunotherapy for autoimmunity.

Similar Articles

Costimulation blockade: towards clinical application

Author(s): Weaver TA, Charafeddine AH, Kirk AD

The B7 family revisited

Author(s): Greenwald RJ, Freeman GJ, Sharpe AH

T-cell clonal anergy

Author(s): Schwartz RH, Mueller DL, Jenkins MK, Quill H

Induction of immunologic tolerance for transplantation

Author(s): Rossini AA, Greiner DL, Mordes JP

The role of peripheral T-cell deletion in transplantation tolerance

Author(s): Wells AD, Li XC, Strom TB, Turka LA

Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells

Author(s): Bour-Jordan H, Salomon BL, Thompson HL, Szot GL, Bernhard MR, et al.

The BB/Wor rat and the balance hypothesis of autoimmunity

Author(s): Mordes JP, Bortell R, Doukas J, Rigby M, Whalen B, et al.

The pathogenesis of autoimmune diabetes mellitus

Author(s): Rossini AA, Mordes JP, Greiner DL

Induction of immunological tolerance to islet allografts

Author(s): Rossini AA, Parker DC, Phillips NE, Durie FH, Noelle RJ, et al.

CD28/B7 regulation of autoimmune diabetes

Author(s): Herold KG, Lenschow DJ, Bluestone JA

Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways

Author(s): Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, et al.

Calcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates

Author(s): Adams AB, Shirasugi N, Durham MM, Strobert E, Anderson D, et al.

CD28/B7 regulation of anti-CD3-mediated immunosuppression in vivo

Author(s): Tang Q, Smith JA, Szot GL, Zhou P, Alegre ML, et al.

What's next in the pipeline

Author(s): Vincenti F, Kirk AD

Prolonged islet allograft survival in diabetic NOD mice by targeting CD45RB and CD154

Author(s): Molano RD, Pileggi A, Berney T, Poggioli R, Zahr E, et al.

Islet cell transplantation tolerance

Author(s): Rossini AA, Mordes JP, Greiner DL, Stoff JS

Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand

Author(s): Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB

Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy

Author(s): Wells AD, Walsh MC, Bluestone JA, Turka LA

Differentiation of regulatory Foxp3+ T cells in the thymic cortex

Author(s): Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, et al.

CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes

Author(s): Lenschow DJ, Herold KC, Rhee L, Patel B, Koons A, et al.

Expansion of human regulatory T-cells from patients with type 1 diabetes

Author(s): Putnam AL, Brusko TM, Lee MR, Liu W, Szot GL, et al.

Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors

Author(s): Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, et al.

Insulin dependent diabetes mellitus hypothesis of autoimmunity

Author(s): Rossini AA, Handler ES, Greiner DL, Mordes JP