Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo

Author(s): Adisakwattana S, Moonsan P, Yibchok-anun S


Cinnamic acid derivatives are naturally occurring substances found in fruits, vegetables, and flowers and are consumed as dietary phenolic compounds. In the present study, cinnamic acid and its derivatives were evaluated for insulin secreting activity in perfused rat pancreas and pancreatic beta-cells (INS-1) as well as an increase in [Ca(2+)]i in vitro. The presence of m-hydroxy or p-methoxy residues on cinnamic acid was a significantly important substituent as an effective insulin releasing agent. The introduction of p-hydroxy and m-methoxy-substituted groups in cinnamic acid structure (ferulic acid) displayed the most potent insulin secreting agent among those of cinnamic acid derivatives. In particular, the stimulatory insulin secreting activities of test compounds were associated with a rise of [Ca(2+)]i in INS-1. In perfused rat pancreas, m-hydroxycinnamic acid, p-methoxycinnamic acid, and ferulic acid (100 microM) significantly stimulated insulin secretion during 10 min of administration. The onset time of insulin secretion of those compounds was less than 1 min and reached its peak at 4 min that was about 2.8-, 3.3-, and 3.4-fold of the baseline level, respectively. Intravenous administration of p-methoxycinnamic acid and ferulic acid (5 mg/kg) significantly decreased plasma glucose and increased insulin concentration in normal rats and maintained its level for 15 min until the end of experiment. Meanwhile, m-hydroxycinnamic acid induced a significant lowering of plasma glucose after 6 min, but the effects were transient with plasma glucose concentration, rapidly returning to basal levels. Our findings suggested that p-methoxycinnamic acid and ferulic acid may be beneficial for the treatment of diabetes mellitus because they regulated blood glucose level by stimulating insulin secretion from pancreatic beta-cells.

Similar Articles

DNA repair, genome stability, and aging

Author(s): Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, et al.

A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes

Author(s): Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, et al.

Type 2 diabetes as an inflammatory disease

Author(s): Donath MY, Shoelson SE

Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters

Author(s): Bhathena J, Martoni C, Kulamarva A, Urbanska AM, Malhotra M, et al.

Lactobacillus fermentum NCIMB 5221 has a greater ferulic acid production compared to other ferulic acid esterase producing Lactobacilli

Author(s): Tomaro-Duchesneau C, Saha S, Malhotra M, Coussa-Charley M, Al-Salami H, et al.

Impact of Recent Increase in Incidence on Future Diabetes Burden: U.S., 2005-2050

Author(s): Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ

Screening of Lactic Acid Bacteria for Bile Salt Hydrolase Activity

Author(s): Tanaka H, Doesburg K, Iwasaki T, Mierau I

Ferulic Acid: therapeutic potential through its antioxidant property

Author(s): Srinivasan M, Sudheer AR, Menon VP

Protective effects of ferulic acid on hyperlipidemic diabetic rats

Author(s): Balasubashini MS, Rukkumani R, Menon VP

Ferulic acid alleviates lipid peroxidation in diabetic rats

Author(s): Balasubashini MS, Rukkumani R, Viswanathan P, Menon VP

Modulation of HER2 expression by ferulic acid on human breast cancer MCF7 cells

Author(s): Chang CJ, Chiu JH, Tseng LM, Chang CH, Chien TM, et al.

Glycosylated hemoglobins and long-term blood glucose control in diabetes mellitus

Author(s): Gabbay KH, Hasty K, Breslow JL, Ellison RC, Bunn HF, et al.