Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production

Author(s): Midaoui AE, Elimadi A, Wu L, Haddad PS, de Champlain J

Abstract

Background: The present study was designed to investigate whether the effects of dietary supplementation with alpha-lipoic acid could prevent the increase in mitochondrial superoxide production in the heart as well as the enhanced formation of advanced glycation end-products (AGE) that are associated with the development of hypertension and insulin resistance in chronically glucose-fed rats.

Methods: Sprague Dawley rats were either given or not given a 10% D-glucose solution to drink during 4 weeks, combined either with a normal chow diet or with alpha-lipoic acid supplemented diet. The oxidative stress was evaluated by measuring the heart mitochondrial superoxide production using the lucigenin chemiluminescence method. The formation of AGE was also assessed in plasma and aorta.

Results: Chronic administration of glucose resulted in a 29% increase in blood pressure, 30% increase in glycemia, 286% increase in insulinemia, and 408% increase in insulin resistance index. Chronic glucose feeding also resulted in a 22% greater mitochondrial superoxide anion production in heart and in an increase of 63% in AGE content in aorta. Increases in blood pressure, aorta AGE content and heart mitochondrial superoxide production were prevented in the rats fed glucose supplemented with lipoic acid. The simultaneous treatment with lipoic acid also attenuated the rise in insulin levels as well as in insulin resistance in the glucose fed rats.

Conclusions: These findings demonstrate that alpha-lipoic acid supplementation prevents development of hypertension and hyperglycemia, presumably through its antioxidative properties, as reflected by prevention of an increase in heart mitochondrial superoxide anion production and in AGE formation in the aorta of chronically glucose treated rats.

Similar Articles

Mitochondrial dysfunction in obesity

Author(s): Bournat JC, Brown CW

Increased oxidative stress in obesity and its impact on metabolic syndrome

Author(s): Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al.

Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress

Author(s): Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM

Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats

Author(s): Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, et al.

Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport

Author(s): Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Barber A, Martínez JA, et al.

Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice

Author(s): Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, et al.

Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes

Author(s): Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaïdi-Tiali N

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice

Author(s): Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, et al.

Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways

Author(s): Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, et al.

A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene

Author(s): Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al.

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Oxidative capacity and aging in human muscle

Author(s): Conley KE, Jubrias SA, Esselman PC

Mitochondrial function and apoptotic susceptibility in aging skeletal muscle

Author(s): Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, et al.

Excessive loss of skeletal muscle mass in older adults with type 2 diabetes

Author(s): Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, et al.