Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide

Author(s): Cicchillo RM, Booker SJ

Abstract

Lipoyl synthase catalyzes the final step in the de novo biosynthesis of the lipoyl cofactor, which is the insertion of two sulfur atoms into an octanoyl chain that is bound in an amide linkage to a conserved lysine on a lipoyl-accepting protein. We show herein that the sulfur atoms in the lipoyl cofactor are derived from lipoyl synthase itself, and that each lipoyl synthase polypeptide contributes both of the sulfur atoms to the intact cofactor.

Similar Articles

Mitochondrial dysfunction in obesity

Author(s): Bournat JC, Brown CW

Increased oxidative stress in obesity and its impact on metabolic syndrome

Author(s): Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al.

Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress

Author(s): Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM

Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats

Author(s): Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, et al.

Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport

Author(s): Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Barber A, Martínez JA, et al.

Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice

Author(s): Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, et al.

Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes

Author(s): Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaïdi-Tiali N

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice

Author(s): Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, et al.

Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways

Author(s): Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, et al.

A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene

Author(s): Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al.

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Oxidative capacity and aging in human muscle

Author(s): Conley KE, Jubrias SA, Esselman PC

Mitochondrial function and apoptotic susceptibility in aging skeletal muscle

Author(s): Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, et al.

Excessive loss of skeletal muscle mass in older adults with type 2 diabetes

Author(s): Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, et al.