Mediation of beta-endorphin in exercise-induced improvement in insulin resistance in obese Zucker rats

Author(s): Su CF, Chang YY, Pai HH, Liu IM, Lo CY, et al.


Background: Aerobic exercise including treadmill running has long been used to successfully treat and/or prevent insulin resistance and type-2 diabetes. Increase of plasma beta-endorphin is observed with exercise. The present study was designed to clarify the role of endogenous beta-endorphin in exercise-induced improvement in insulin resistance.

Methods: We used a moderate exercise program consisting of treadmill running at 20 m/min and 0% grade for 1 h/day, 7 days/week, for 8 weeks. Plasma glucose concentration was assessed by the glucose oxidase method. The enzyme-linked immunosorbent assay was performed to quantify the plasma level of beta-endorphin-like immunoreactivity (BER). The glucose disposal rate (GDR) was measured by the hyperinsulinemic euglycemic clamp technique. Changes of the insulin signaling in isolated soleus muscle were then detected by immunoprecipitation and immunoblotting.

Results: An increase of plasma BER in parallel with the reduction of plasma glucose was obtained in exercise-trained obese Zucker rats. Different from a marked reduction in sedentary obese rats, the value of insulin-stimulated GDR obtained from the exercised obese rats was reversed to near that of the sedentary lean group, eight weeks after the last period of exercise. This effect of exercise was inhibited by naloxone or naloxonazine at doses sufficient to block opioid micro-receptors. Signaling-related defects in the soleus muscle of sedentary obese Zucker rats, which impaired glucose transporter subtype 4 (GLUT 4), included decreased phosphorylation of insulin receptor substrate (IRS)-1, as well as an attenuated p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase) and Akt serine phosphorylation. In contrast, exercise training failed to modify the levels of insulin receptor (IR), IRS-1, and IR tyrosine autophosphorylation in obese Zucker rats.

Conclusion: Enhanced insulin sensitivity via exercise training might be mediated by endogenous beta-endorphin through an increase of postreceptor insulin signaling related to the IRS-1-associated PI3-kinase step that leads to the enhancement of GLUT 4 translocation and improved glucose disposal in obese Zucker rats.

Similar Articles

Prolonged increase in insulin-stimulated glucose transport in muscle after exercise

Author(s): Cartee GD, Young DA, Sleeper MD, Zierath J, Wallberg-Henriksson H, et al.

Effects of endurance training on gene expression of insulin signal transduction pathway

Author(s): Kim Y, Inoue T, Nakajima R, Nakae K, Tamura T, et al.

Is dehydroepiandrosterone a hormone? J Endocrinol 187: 169-196

Author(s): Labrie F, Luu-The V, Bélanger A, Lin SX, Simard J, et al.

Reduced serum dehydroepiandrosterone levels in diabetic patients with hyperinsulinaemia

Author(s): Yamaguchi Y, Tanaka S, Yamakawa T, Kimura M, Ukawa K, et al.

Endurance exercise training enhances local sex steroidogenesis in skeletal muscle

Author(s): Aizawa K, Iemitsu M, Maeda S, Mesaki N, Ushida T, et al.

Sex differences in steroidogenesis in skeletal muscle following a single bout of exercise in rats

Author(s): Aizawa K, Iemitsu M, Otsuki T, Maeda S, Miyauchi T, et al.

Acute exercise activates local bioactive androgen metabolism in skeletal muscle

Author(s): Aizawa K, Iemitsu M, Maeda S, Otsuki T, Sato K, et al.

Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat

Author(s): Tokuyama Y, Sturis J, DePaoli AM, Takeda J, Stoffel M, et al.

Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training

Author(s): Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, et al.

Is dehydroepiandrosterone an antiobesity agent? FASEB J 7: 414-419

Author(s): Berdanier CD, Parente JA Jr, McIntosh MK

Endogenous sex hormones and metabolic syndrome in aging men

Author(s): Muller M, Grobbee DE, den Tonkelaar I, Lamberts SW, van der Schouw YT