Author(s): Martoni C, Bhathena J, Urbanska AM, Prakash S
This is the first study of its kind to screen probiotic lactic acid bacteria for the purpose of microencapsulating a highly bile salt hydrolase (BSH)-active strain. A Lactobacillus reuteri strain and a Bifidobacterium longum strain were isolated as the highest BSH producers among the candidates. Microcapsules were prepared with a diameter of 619 +/- 31 mum and a cell load of 5 x 10(9) cfu/ml. Post de Man, Rogosa, and Sharpe broth-acid challenge, L. reuteri microcapsules metabolized glyco- and tauro-conjugated bile salts at rates of 10.16 +/- 0.46 and 1.85 +/- 0.33 micromol/g microcapsule per hour, respectively, over the first 2 h. Microencapsulated B. longum had minimal BSH activity and were significantly (P < 0.05) more susceptible to acid challenge. Further testing of L. reuteri microcapsules in a simulated human gastrointestinal (GI) model showed an improved rate, with 49.4 +/- 6.21% of glyco-conjugates depleted after 60 min and complete deconjugation after 4 h. Microcapsules protected the encased cells in the simulated stomach maintaining L. reuteri viability above 10(9), 10(8), and 10(6) cfu/ml after 2 h at pH 3.0, 2.5, and 2.0, respectively. Results show excellent potential for this highly BSH-active microencapsulation system in vitro, highlighted by improved viability and substrate utilization in simulated GI transit.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/18719901
Author(s): Rice-Evans CA, Miller NJ, Paganga G
Author(s): Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, et al.
Author(s): Hu CT, Wu JR, Cheng CC, Wang S, Wang HT, et al.
Author(s): Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, et al.
Author(s): Sonta T, Inoguchi T, Tsubouchi H, Sekiguchi N, Kobayashi K, et al.
Author(s): Donath MY, Shoelson SE
Author(s): Bhathena J, Kulamarva A, Urbanska AM, Martoni C, Prakash S
Author(s): Bhathena J, Kulamarva A, Martoni C, Urbanska AM, Prakash S
Author(s): Bhathena J, Martoni C, Kulamarva A, Urbanska AM, Malhotra M, et al.
Author(s): Tomaro-Duchesneau C, Saha S, Malhotra M, Coussa-Charley M, Al-Salami H, et al.
Author(s): Tomaro-Duchesneau C, Saha S, Malhotra M, Coussa-Charley M, Kahouli I, et al.
Author(s): Lai KK, Lorcan GL, Gonzalez CF
Author(s): Prakash S, Tomaro-Duchesneau C, Saha S, Cantor A
Author(s): Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ
Author(s): Adisakwattana S, Moonsan P, Yibchok-anun S
Author(s): Taylor BA, Phillips SJ
Author(s): de Roos B, Rucklidge G, Reid M, Ross K, Duncan G, et al.
Author(s): Tanaka H, Doesburg K, Iwasaki T, Mierau I
Author(s): Pfeiler EA, Klaenhammer TR
Author(s): Srinivasan M, Sudheer AR, Menon VP
Author(s): Balasubashini MS, Rukkumani R, Menon VP
Author(s): Balasubashini MS, Rukkumani R, Viswanathan P, Menon VP
Author(s): Atsuyo F, Hideyuki S, Asako D, Kunihisa O, Shohei M, et al.
Author(s): Chang CJ, Chiu JH, Tseng LM, Chang CH, Chien TM, et al.
Author(s): Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, et al.
Author(s): Lee YS
Author(s): Taniguchi H, Hosoda A, Tsuno T, Maruta Y, Nomura E
Author(s): Lesca P
Author(s): Tanaka T, Kojima T, Kawamori T, Wang A, Suzui M, et al.
Author(s): Zhao Z, Egashira Y, Sanada H
Author(s): UK Prospective Diabetes Study Group
Author(s): Gabbay KH, Hasty K, Breslow JL, Ellison RC, Bunn HF, et al.
Author(s): Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, et al.
Author(s): Dagogo-Jack S
Author(s): Bucala R, Makita Z, Vega G, Grundy S, Koschinsky T, et al.
Author(s): Aronson D, Rayfield EJ
Author(s): Schalkwijk CG, Miyata T