Mitochondrial dysfunction in obesity

Author(s): Bournat JC, Brown CW

Abstract

Purpose of review: The review highlights recent findings regarding the functions of mitochondria in adipocytes, providing an understanding of their central roles in regulating substrate metabolism, energy expenditure, disposal of reactive oxygen species (ROS), and in the pathophysiology of obesity and insulin resistance, as well as roles in the mechanisms that affect adipogenesis and mature adipocyte function.

Recent findings: Nutrient excess leads to mitochondrial dysfunction, which in turn leads to obesity-related pathologies, in part due to the harmful effects of ROS. The recent recognition of 'ectopic' brown adipose in humans suggests that this tissue may play an underappreciated role in the control of energy expenditure. Transcription factors, PGC-1alpha and PRDM16, which regulate brown adipogenesis, and members of the TGF-beta superfamily that modulate this process may be important new targets for antiobesity drugs.

Summary: Mitochondria play central roles in ATP production, energy expenditure, and disposal of ROS. Excessive energy substrates lead to mitochondrial dysfunction with consequential effects on lipid and glucose metabolism. Adipocytes help to maintain the appropriate balance between energy storage and expenditure and maintaining this balance requires normal mitochondrial function. Many adipokines, including members of the TGF-beta superfamily, and transcriptional coactivators, PGC-1alpha and PRDM16, are important regulators of this process.

Similar Articles

Increased oxidative stress in obesity and its impact on metabolic syndrome

Author(s): Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al.

Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress

Author(s): Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM

Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats

Author(s): Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, et al.

Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport

Author(s): Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Barber A, Martínez JA, et al.

Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice

Author(s): Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, et al.

Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes

Author(s): Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaïdi-Tiali N

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice

Author(s): Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, et al.

Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways

Author(s): Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, et al.

A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene

Author(s): Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al.

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Oxidative capacity and aging in human muscle

Author(s): Conley KE, Jubrias SA, Esselman PC

Mitochondrial function and apoptotic susceptibility in aging skeletal muscle

Author(s): Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, et al.

Excessive loss of skeletal muscle mass in older adults with type 2 diabetes

Author(s): Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, et al.