Mitochondrial function and apoptotic susceptibility in aging skeletal muscle

Author(s): Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, et al.

Abstract

During aging, skeletal muscle undergoes sarcopenia, a condition characterized by a loss of muscle cell mass and alterations in contractile function. The origin of these decrements is unknown, but evidence suggests that they can be partly attributed to mitochondrial dysfunction. To characterize the nature of this dysfunction, we investigated skeletal muscle contractile properties, subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial biogenesis and function, as well as apoptotic susceptibility in young (6 months old) and senescent (36 months old) Fischer 344 Brown Norway rats. Muscle mass and maximal force production were significantly lower in the 36-month group, which is indicative of a sarcopenic phenotype. Furthermore, contractile activity in situ revealed greater fatigability in the 36-month compared to the 6-month animals. This decrement could be partially accounted for by a 30% lower mitochondrial content in fast-twitch muscle from 36-month animals, as well as lower protein levels of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha. Enzyme activities and glutamate-induced oxygen consumption rates in isolated SS and IMF mitochondria were similar between age groups. However, mitochondrial reactive oxygen species (ROS) production during state 3 respiration was approximately 1.7-fold greater in mitochondria isolated from 36-month compared to 6-month animals, and was accompanied by a 1.8-fold increase in the DNA repair enzyme 8-oxoguanine glycosylase 1 in fast-twitch muscle. Basal rates of release of cytochrome c and endonuclease G in SS mitochondria were 3.5- to 7-fold higher from senescent animals. These data suggest that the age-related sarcopenia and muscle fatigability are associated with enhanced ROS production, increased mitochondrial apoptotic susceptibility and reduced transcriptional drive for mitochondrial biogenesis.

Similar Articles

Mitochondrial dysfunction in obesity

Author(s): Bournat JC, Brown CW

Increased oxidative stress in obesity and its impact on metabolic syndrome

Author(s): Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al.

Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress

Author(s): Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM

Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats

Author(s): Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, et al.

Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport

Author(s): Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Barber A, Martínez JA, et al.

Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice

Author(s): Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, et al.

Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes

Author(s): Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaïdi-Tiali N

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice

Author(s): Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, et al.

Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways

Author(s): Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, et al.

A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene

Author(s): Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al.

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Oxidative capacity and aging in human muscle

Author(s): Conley KE, Jubrias SA, Esselman PC

Excessive loss of skeletal muscle mass in older adults with type 2 diabetes

Author(s): Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, et al.