MR properties of brown and white adipose tissues

Author(s): Hamilton G, Smith DL Jr, Bydder M, Nayak KS, Hu HH

Abstract

Purpose: To explore the MR signatures of brown adipose tissue (BAT) compared with white adipose tissue (WAT) using single-voxel MR spectroscopy.

Materials and methods: (1) H MR STEAM spectra were acquired from a 3 Tesla clinical whole body scanner from seven excised murine adipose tissue samples of BAT (n=4) and WAT (n=3). Spectra were acquired at multiple echo times (TEs) and inversion times (TIs) to measure the T1, T2, and T2-corrected peak areas. A theoretical triglyceride model characterized the fat in terms of number of double bonds (ndb) and number of methylene-interrupted double bonds (nmidb).

Results: Negligible differences between WAT and BAT were seen in the T1 and T2 of fat and the T2 of water. However, the water fraction in BAT was higher (48.5%) compared with WAT (7.1%) and the T1 of water was lower in BAT (618 ms) compared with WAT (1053 ms). The fat spectrum also differed, indicating lower levels of unsaturated triglycerides in BAT (ndb=2.7, nmidb=0.7) compared with WAT (ndb=3.3, nmidb=1.0).

Conclusion: We have demonstrated that there are several key MR-based signatures of BAT and WAT that may allow differentiation on MR imaging.

Similar Articles

Membranes as possible pacemakers of metabolism

Author(s): Hulbert AJ, Else PL

Life, death and membrane bilayers

Author(s): Hulbert AJ

Quantitative atomic force microscopy with carbon monoxide terminated tips

Author(s): Sun Z, Boneschanscher MP, Swart I, Vanmaekelbergh D, Liljeroth P

Structure of lipid bilayers

Author(s): Nagle JF, Tristram-Nagle S

The cellular fate of glucose and its relevance in type 2 diabetes

Author(s): Bouché C, Serdy S, Kahn CR, Goldfine AB

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Relationship between carnitine, fatty acids and insulin resistance

Author(s): Lohninger A, Radler U, Jinniate S, Lohninger S, Karlic H, et al.

Is irisin a human exercise gene? Nature 488: E9-10

Author(s): Timmons JA, Baar K, Davidsen PK, Atherton PJ

FNDC5 and irisin in humans: I

Author(s): Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, et al.

Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance

Author(s): Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, et al.

Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin

Author(s): Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al.

Hemorheological disorders in diabetes mellitus

Author(s): Cho YI, Mooney MP, Cho DJ

Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol

Author(s): Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM