Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma

Author(s): Lavaissiere L, Jia S, Nishiyama M, de la Monte S, Stern AM, et al.

Abstract

To characterize genes that become upregulated with malignant transformation of human hepatocytes, a library of monoclonal antibodies was produced against the FOCUS hepatocellular carcinoma cell line. Antibody FB-50 reacted with an antigen that was highly expressed in 4 of 10 primary hepatocellular carcinomas, in all 20 cholangiocarcinomas we studied, and in a variety of transformed cell lines. This antigen was also highly expressed in neoplastic epithelial cells of breast and colon carcinomas in contrast to its low level of expression in normal hepatocytes and in non-neoplastic epithelial cells. Among the normal adult tissues studied, high levels were observed only in proliferating trophoblastic cells of the placenta and in adrenal glands. A 636-bp partial cDNA, isolated from a gamma GT11 expression library generated with HepG2 human hepatoblastoma cells, and a complete cDNA, generated by reverse transcriptase-PCR, identified the antigen as the human form of aspartyl(asparaginyl)beta-hydroxylase. This enzyme catalyzes posttranslational hydroxylation of beta carbons of specific aspartyl and asparaginyl residues in EGF-like domains of certain proteins. Analyses of extracts prepared from several human tumor cell lines compared to their normal tissue counterparts indicate that the increase in hydroxylase, approximately 10-fold, is controlled at the level of transcription and the protein is expressed in an enzymatically active form. In similar analyses, comparing hepatocellular carcinomas to adjacent uninvolved liver from five patients, enzymatic activity was much higher in the tumor tissue from the four patients whose immunoblots revealed increased hydroxylase protein in the malignant tissue. EGF repeats in the extracellular domain of Notch or its homologs contain the consensus sequence for hydroxylation. Deletion mutants lacking this domain are gain-of-function mutants, suggesting that the domain modulates signal transduction by the cytoplasmic domain. While the function imparted by beta hydroxylation is unknown, our studies raise the possibility that beta hydroxylation is regulated in proteins like the mammalian Notch homologs, whose cytoplasmic domains have been shown to be oncogenic.

Similar Articles

Fetal alcohol spectrum disorders: an overview

Author(s): Riley EP, Infante MA, Warren KR

Regulation of neuronal survival by the serine-threonine protein kinase Akt

Author(s): Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, et al.

Ethanol inhibition of insulin signaling in hepatocellular carcinoma cells

Author(s): Banerjee K, Mohr L, Wands JR, de la Monte SM

Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase

Author(s): de la Monte SM, Ganju N, Banerjee K, Brown NV, Luong T, et al.

Acute ethanol exposure inhibits insulin signaling in the liver

Author(s): He J, de la Monte S, Wands JR

Potential role of PTEN phosphatase in ethanol-impaired survival signaling in the liver

Author(s): Yeon JE, Califano S, Xu J, Wands JR, De La Monte SM

Frizzled signaling and the developmental control of cell polarity

Author(s): Shulman JM, Perrimon N, Axelrod JD

Roles of Wnt proteins in neural development and maintenance

Author(s): Patapoutian A, Reichardt LF

Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1

Author(s): Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R

Wnt signalling required for expansion of neural crest and CNS progenitors

Author(s): Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S

Wnt signaling regulates hepatic metabolism

Author(s): Liu H, Fergusson MM, Wu JJ, Rovira II, Liu J, et al.

Wnt signaling regulates mitochondrial physiology and insulin sensitivity

Author(s): Yoon JC, Ng A, Kim BH, Bianco A, Xavier RJ, et al.

Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1)

Author(s): Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, et al.

Deconstructing the ßcatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling

Author(s): Roberts DM, Pronobis MI, Poulton JS, Waldmann JD, Stephenson EM, et al.

Notch in the vertebrate nervous system: an old dog with new tricks

Author(s): Pierfelice T, Alberi L, Gaiano N

Notch targets and their regulation

Author(s): Bray S, Bernard F

Roles of bHLH genes in neural stem cell differentiation

Author(s): Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R

Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness

Author(s): de la Monte SM, Tamaki S, Cantarini MC, Ince N, Wiedmann M, et al.

Impaired placentation in fetal alcohol syndrome

Author(s): Gundogan F, Elwood G, Longato L, Tong M, Feijoo A, et al.

Role of the aspartyl-asparaginyl-beta-hydroxylase gene in neuroblastoma cell motility

Author(s): Sepe PS, Lahousse SA, Gemelli B, Chang H, Maeda T, et al.

AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis

Author(s): Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, et al.

Wnt signaling function in Alzheimer's disease

Author(s): De Ferrari GV, Inestrosa NC