Author(s): Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR
Not all patients with type 2 diabetes develop renal dysfunction. Identifying those at risk is problematic because even microalbuminuria, often used clinically as an indicator of future renal dysfunction, does not always precede worsening renal function. We sought to identify clinical risk factors at diagnosis of type 2 diabetes associated with later development of renal dysfunction. Of 5,102 U.K. Prospective Diabetes Study (UKPDS) participants, prospective analyses were undertaken in those without albuminuria (n = 4,031) or with normal plasma creatinine (n=5,032) at diagnosis. Stepwise proportional hazards multivariate regression was used to assess association of putative baseline risk factors with subsequent development of albuminuria (microalbuminuria or macroalbuminuria) or renal impairment (Cockcroft-Gault estimated creatinine clearance <60 ml/min or doubling of plasma creatinine). Over a median of 15 years of follow-up 1,544 (38%) of 4,031 patients developed albuminuria and 1,449 (29%) of 5,032 developed renal impairment. Of 4,006 patients with the requisite data for both outcomes, 1,534 (38%) developed albuminuria and 1,132 (28%) developed renal impairment. Of the latter, 575 (51%) did not have preceding albuminuria. Development of albuminuria or renal impairment was independently associated with increased baseline systolic blood pressure, urinary albumin, plasma creatinine, and Indian-Asian ethnicity. Additional independent risk factors for albuminuria were male sex, increased waist circumference, plasma triglycerides, LDL cholesterol, HbA(1c) (A1C), increased white cell count, ever having smoked, and previous retinopathy. Additional independent risk factors for renal impairment were female sex, decreased waist circumference, age, increased insulin sensitivity, and previous sensory neuropathy. Over a median of 15 years from diagnosis of type 2 diabetes, nearly 40% of UKPDS patients developed albuminuria and nearly 30% developed renal impairment. Distinct sets of risk factors are associated with the development of these two outcomes, consistent with the concept that they are not linked inexorably in type 2 diabetes.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/16731850
Author(s): Selby JV, Ray GT, Zhang D, Colby CJ
Author(s): Sidorov J, Shull R, Tomcavage J, Girolami S, Lawton N, et al.
Author(s): Cutajar J
Author(s): Costa J, Borges M, David C, Vaz Carneiro A
Author(s): IDF Clinical Guidelines Task Force
Author(s): Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, et al.
Author(s): Selby JV, Karter AJ, Ackerson LM, Ferrara A, Liu J
Author(s): The Mount Hood 4 Modeling Group
Author(s): Clark CM Jr, Snyder JW, Meek RL, Stutz LM, Parkin CG
Author(s): Marcantonio ER, Goldman L, Mangione CM, Ludwig LE, Muraca B, et al.
Author(s): Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, et al.
Author(s): Carr MC, Brunzell JD
Author(s): van Leiden HA, Dekker JM, Moll AC, Nijpels G, Heine RJ, et al.
Author(s): Stevens RJ, Kothari V, Adler AI, Stratton IM; United Kingdom Prospective Diabetes Study (UKPDS) Group
Author(s): Serrano Rios M
Author(s): Adler AI, Boyko EJ, Ahroni JH, Stensel V, Forsberg RC, et al.
Author(s): Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, et al.
Author(s): Bakris GL, Williams M, Dworkin L, Elliott WJ, Epstein M, et al.
Author(s): Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R
Author(s): Park JY, Kim HK, Chung YE, Kim SW, Hong SK, et al.
Author(s): Tuomilehto J, Rastenyte D, Birkenhäger WH, Thijs L, Antikainen R, et al.
Author(s): Hansson L, Zanchetti A, Carruthers SG, Dahlöf B, Elmfeldt D, et al.
Author(s): Curb JD, Pressel SL, Cutler JA, Savage PJ, Applegate WB, et al.
Author(s): Anderson JW, Kendall CW, Jenkins DJ
Author(s): Metascreen Writing Committee, Bonadonna R, Cucinotta D, Fedele D, Riccardi G, et al.
Author(s): Costa LA, Canani LH, Lisbôa HR, Tres GS, Gross GL
Author(s): Handelsman Y, Jellinger PS
Author(s): Bonora E, Targher G, Formentini G, Calcaterra F, Lombardi S, et al.