Author(s): López-Bermejo A, Chico-Julià B, Fernàndez-Balsells M, Recasens M, Esteve E, et al.
Visfatin has shown to be increased in type 2 diabetes but to be unrelated to insulin sensitivity. We hypothesized that visfatin is associated with insulin secretion in humans. To this aim, a cross-sectional study was conducted in 118 nondiabetic men and 64 (35 men and 29 women) type 2 diabetic patients. Type 1 diabetic patients with long-standing disease (n = 58; 31 men and 27 women) were also studied. In nondiabetic subjects, circulating visfatin (enzyme immunoassay) was independently associated with insulin secretion (acute insulin response to glucose [AIRg] from intravenous glucose tolerance tests) but not with insulin sensitivity (Si) or other metabolic or anthropometric parameters, and AIRg alone explained 8% of visfatin variance (beta = -0.29, P = 0.001). Circulating visfatin was increased in type 2 diabetes (mean 18 [95% CI 16-21] vs. 15 ng/ml [13-17] for type 2 diabetic and nondiabetic subjects, respectively; P = 0.017, adjusted for sex, age, and BMI), although this association was largely attenuated after accounting for HbA1c (A1C). Finally, circulating visfatin was found to be increased in patients with long-standing type 1 diabetes, even after adjusting for A1C values (37 ng/ml [34-40]; P < 0.0001, adjusted for sex, age, BMI, and A1C compared with either type 2 diabetic or nondiabetic subjects). In summary, circulating visfatin is increased with progressive beta-cell deterioration. The study of the regulation and role of visfatin in diabetes merits further consideration.
Referred From: https://www.ncbi.nlm.nih.gov/pubmed/17003355
Author(s): Arner P
Author(s): Chen MP, Chung FM, Chang DM, Tsai JC, Huang HF, et al.
Author(s): Fantuzzi G
Author(s): Filippatos TD, Randeva HS, Derdemezis CS, Elisaf MS, Mikhailidis DP
Author(s): Adeghate E
Author(s): Alberti KG, Zimmet PZ
Author(s): Laakso M, Pyorala K
Author(s): Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al.
Author(s): Kim MK, Lee JH, Kim H, Park SJ, Kim SH, et al.
Author(s): Derosa G, Maffioli P, Salvadeo SA, Ferrari I, Gravina A, et al.
Author(s): Sakamoto A, Ishizaka Y, Toda E, Nagai R, Koike K, et al.
Author(s): Guagnano MT, Romano M, Falco A, Nutini M, Marinopiccoli M, et al.
Author(s): Choi KM, Kim JH, Cho GJ, Baik SH, Park HS, et al.
Author(s): Araki S, Dobashi K, Kubo K, Kawagoe R, Yamamoto Y, et al.
Author(s): Kim JH, Kim SH, Im JA, Lee DC
Author(s): Pfutzner A, Hanefeld M, Lübben G, Weber MM, Karagiannis E, et al.
Author(s): Kaminska A, Kopczynska E, Bronisz A, Zmudzinska M, Bielinski M, et al.
Author(s): Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, et al.
Author(s): García-Fuentes E, García-Almeida JM, García-Arnés J, García-Serrano S, Rivas-Marín J, et al.
Author(s): Chang YH, Chang DM, Lin KC, Shin SJ, Lee YJ
Author(s): Pagano C, Pilon C, Olivieri M, Mason P, Fabris R, et al.
Author(s): Jian WX, Luo TH, Gu YY, Zhang HL, Zheng S et al.
Author(s): Kershaw EE, Flier JS
Author(s): Sharma AM, Chetty VT
Author(s): Fasshauer M, Paschke R