The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake

Author(s): Addy C, Wright H, Van Laere K, Gantz I, Erondu N, et al.

Abstract

Cannabinoid 1 receptor (CB1R) inverse agonists are emerging as a potential obesity therapy. However, the physiological mechanisms by which these agents modulate human energy balance are incompletely elucidated. Here, we describe a comprehensive clinical research study of taranabant, a structurally novel acyclic CB1R inverse agonist. Positron emission tomography imaging using the selective CB1R tracer [(18)F]MK-9470 confirmed central nervous system receptor occupancy levels ( approximately 10%-40%) associated with energy balance/weight-loss effects in animals. In a 12-week weight-loss study, taranabant induced statistically significant weight loss compared to placebo in obese subjects over the entire range of evaluated doses (0.5, 2, 4, and 6 mg once per day) (p < 0.001). Taranabant treatment was associated with dose-related increased incidence of clinical adverse events, including mild to moderate gastrointestinal and psychiatric effects. Mechanism-of-action studies suggest that engagement of the CB1R by taranabant leads to weight loss by reducing food intake and increasing energy expenditure and fat oxidation.

Similar Articles

Mitochondrial dysfunction in obesity

Author(s): Bournat JC, Brown CW

Increased oxidative stress in obesity and its impact on metabolic syndrome

Author(s): Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al.

Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress

Author(s): Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM

Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetic rats

Author(s): Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, et al.

Lipoic acid prevents body weight gain induced by a high fat diet in rats: effects on intestinal sugar transport

Author(s): Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Barber A, Martínez JA, et al.

Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice

Author(s): Ravinet Trillou C, Arnone M, Delgorge C, Gonalons N, Keane P, et al.

Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes

Author(s): Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaïdi-Tiali N

Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice

Author(s): Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, et al.

Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways

Author(s): Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, et al.

A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene

Author(s): Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al.

Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes

Author(s): Kelley DE, He J, Menshikova EV, Ritov VB

Oxidative capacity and aging in human muscle

Author(s): Conley KE, Jubrias SA, Esselman PC

Mitochondrial function and apoptotic susceptibility in aging skeletal muscle

Author(s): Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, et al.

Excessive loss of skeletal muscle mass in older adults with type 2 diabetes

Author(s): Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, et al.