The epidemiology of chronic kidney disease

Author(s): Atkins RC

Abstract

The world's disease profile is changing, and chronic diseases now account for the majority of global morbidity and mortality, rather than infectious diseases. The causes of chronic kidney diseases reflect this change and diabetes, together with hypertension, is now the major cause of end-stage renal failure worldwide, not only within the developed world, but also increasingly within the emerging world. Diabetes is of epidemic proportions, and its prevalence will double in the next 25 years, particularly in the developing countries. This will place an enormous financial burden on countries, including the cost of the management of end-stage renal failure. Thus, it is medically and economically imperative for awareness, detection, and prevention programs to be introduced across the world, particularly in the developing countries. This will require concerted action from global institutions, governments, health service providers, and medical practitioners.

Similar Articles

The early natural history of nephropathy in Type 1 Diabetes: III

Author(s): Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, et al.

The pathogenesis of diabetic nephropathy

Author(s): Dronavalli S, Duka I, Bakris GL

Patterns of renal injury in NIDDM patients with microalbuminuria

Author(s): Fioretto P, Mauer M, Brocco E, Velussi M, Frigato F, et al.

New and old markers of progression of diabetic nephropathy

Author(s): Jerums G, Premaratne E, Panagiotopoulos S, Clarke S, Power DA, et al.

Recent and potential developments of biofluid analyses in metabolomics

Author(s): Zhang A, Sun H, Wang P, Han Y, Wang X

A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human

Author(s): Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, et al.

A metabonomic comparison of urinary changes in Zucker and GK rats

Author(s): Zhao LC, Zhang XD, Liao SX, Gao HC, Wang HY, et al.

Scaling and normalization effects in NMR spectroscopic metabonomic data sets

Author(s): Craig A, Cloarec O, Holmes E, Nicholson JK, Lindon JC

Normalization of urinary drug concentrations with specific gravity and creatinine

Author(s): Cone EJ, Caplan YH, Moser F, Robert T, Shelby MK, et al.

Normalization strategies for metabonomic analysis of urine samples

Author(s): Warrack BM, Hnatyshyn S, Ott KH, Reily MD, Sanders M, et al.

Comprehensive profiling and quantitation of amine group containing metabolites

Author(s): Boughton BA, Callahan DL, Silva C, Bowne J, Nahid A, et al.

Proposed minimum reporting standards for data analysis in metabolomics

Author(s): Goodacre R, Broadhurst D, Smilde A, Kristal B, Baker J, et al.

A gentle guide to the analysis of metabolomic data

Author(s): Steuer R, Morgenthal K, Weckwerth W, Selbig J

Centering, scaling, and transformations: improving the biological information content of metabolomics data

Author(s): van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ

Multiple hypothesis testing

Author(s): Shaffer JP

Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations

Author(s): Miller RC, Brindle E, Holman DJ, Shofer J, Klein NA, et al.

Metabolite profiles and the risk of developing diabetes

Author(s): Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, et al.

Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes

Author(s): Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, et al.

Taurine intestinal absorption and renal excretion test in diabetic patients: a pilot study

Author(s): Merheb M, Daher RT, Nasrallah M, Sabra R, Ziyadeh FN, et al.

Preventive effect of taurine on experimental type II diabetic nephropathy

Author(s): Lin S, Yang J, Wu G, Liu M, Luan X, et al.