The increase in cardiac pyruvate dehydrogenase kinase-4 after short-term dexamethasone is controlled by an Akt-p38-forkhead box other factor-1 signaling axis

Author(s): Puthanveetil P, Wang Y, Wang F, Kim MS, Abrahani A, et al.

Abstract

Glucocorticoids increase pyruvate dehydrogenase kinase-4 (PDK4) mRNA and protein expression, which phosphorylates pyruvate dehydrogenase, thereby preventing the formed pyruvate from undergoing mitochondrial oxidation. This increase in PDK4 expression is mediated by the mandatory presence of Forkhead box other factors (FoxOs) in the nucleus. In the current study, we examined the importance of the nongenomic effects of dexamethasone (Dx) in determining the compartmentalization of FoxO and hence its transcriptional activity. Rat cardiomyocytes exposed to Dx produced a robust decrease in glucose oxidation. Measurement of FoxO compartmentalization demonstrated increase in nuclear but resultant decrease in cytosolic content of FoxO1 with no change in the total content. The increase in nuclear content of FoxO1 correlated to an increase in nuclear phospho-p38 MAPK together with a robust association between this transcription factor and kinase. Dx also promoted nuclear retention of FoxO1 through a decrease in phosphorylation of Akt, an effect mediated by heat shock proteins binding to Akt. Measurement of the nuclear and total expression of sirtuin-1 protein showed no change after Dx. Instead, Dx increased the association of sirtuin-1 with FoxO1, thereby causing a decrease in FoxO acetylation. Manipulation of FoxO1 through agents that interfere with its nuclear shuttling or acetylation were effective in reducing Dx-induced increase in PDK4 protein expression. Our data suggest that FoxO1 has a major PDK4-regulating function. In addition, given the recent suggestions that altering glucose use can set the stage for heart failure, manipulating FoxO could assist in devising new therapeutic strategies to optimize cardiac metabolism and prevent PDK4 induced cardiac complications.

Similar Articles

Diabetes and the risk of heart failure

Author(s): Dhingra R, Vasan RS

Pathophysiology of myocardial reperfusion

Author(s): Fox KA, Bergmann SR, Sobel BE

Chronic pharmacological preconditioning against ischemia

Author(s): Luca MC, Liuni A, Muxel S, Münzel T, Forconi S, et al.

Myocardial fatty acid metabolism in health and disease

Author(s): Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC

FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress

Author(s): Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE

FoxO, autophagy, and cardiac remodeling

Author(s): Ferdous A, Battiprolu PK, Ni YG, Rothermel BA, Hill JA

The FoxO family in cardiac function and dysfunction

Author(s): Ronnebaum SM, Patterson C

Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

Author(s): Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, et al.

Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1

Author(s): Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A, et al.

Altered acetylcholine and norepinephrine concentrations in diabetic rat hearts

Author(s): Akiyama N, Okumura K, Watanabe Y, Hashimoto H, Ito T, et al.

Glucose for the heart

Author(s): Depre C, Vanoverschelde JL, Taegtmeyer H

Hibernating myocardium

Author(s): Wijns W, Vatner SF, Camici PG

Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study

Author(s): Leung AA, Eurich DT, Lamb DA, Majumdar SR, Johnson JA, et al.

Phosphatases at the heart of FoxO metabolic control

Author(s): Tremblay ML, Giguère V

Adiponectin in the heart and vascular system

Author(s): Ding M, Rzucidlo EM, Davey JC, Xie Y, Liu R, et al.

The role of FoxO in the regulation of metabolism

Author(s): Gross DN, van den Heuvel AP, Birnbaum MJ

FoxO transcription factors; Regulation by AKT and 14-3-3 proteins

Author(s): Tzivion G, Dobson M, Ramakrishnan G

Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction

Author(s): Parisi Q, Biondi-Zoccai GG, Abbate A, Santini D, Vasaturo F, et al.

Silent information regulator 1 protects the heart from ischemia/reperfusion

Author(s): Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, et al.

Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase

Author(s): Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, et al.

Oxidative stress, nitric oxide, and diabetes

Author(s): Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, et al.

Potentiation of isosorbide dinitrate effects with N-acetylcysteine in patients with chronic heart failure

Author(s): Mehra A, Shotan A, Ostrzega E, Hsueh W, Vasquez-Johnson J, et al.

Influence of diabetes mellitus on heart failure risk and outcome

Author(s): Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, et al.

Forkhead transcription factors coordinate expression of myocardial KATP channel subunits and energy metabolism

Author(s): Philip-Couderc P, Tavares NI, Roatti A, Lerch R, Montessuit C, et al.

An essential role of the JAK-STAT pathway in ischemic preconditioning

Author(s): Xuan YT, Guo Y, Han H, Zhu Y, Bolli R

Preconditioning the diabetic heart: the importance of Akt phosphorylation

Author(s): Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM