Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population

Author(s): Cho YM, Kim TH, Lim S, Choi SH, Shin HD, et al.

Abstract

Aims/hypothesis: New genetic variants associated with susceptibility to type 2 diabetes mellitus have been discovered in recent genome-wide association (GWA) studies. The aim of the present study was to examine the association between these diabetogenic variants and gestational diabetes mellitus (GDM).

Methods: The study included 869 Korean women with GDM and 345 female and 287 male Korean non-diabetic controls. We genotyped the single nucleotide polymorphisms (SNPs) rs7756992 and rs7754840 in CDKAL1; rs564398, rs1333040, rs10757278 and rs10811661 in the CDKN2A-CDKN2B region; rs8050136 in FTO; rs1111875, rs5015480 and rs7923837 in HHEX; rs4402960 in IGF2BP2; and rs13266634 in SLC30A8. In addition, rs7903146 and rs12255372 in TCF7L2; rs5215 and rs5219 in KCNJ11; and rs3856806 and rs1801282 in PPARG were genotyped. The genotype frequencies in the GDM patients were compared with those in the non-diabetic controls.

Results: Compared with controls (men and women combined), GDM was associated with rs7756992 and rs7754840 (OR 1.55, 95% CI 1.34-1.79, p = 4.17 x 10(-9)) in CDKAL1; rs10811661 (OR 1.49, 95% CI 1.29-1.72, p = 1.05 x 10(-7)) in the CDKN2A-CDKN2B region; rs1111875 (OR 1.27, 95% CI 1.09-1.49, p = 0.003), rs5015480, and rs7923837 in HHEX; rs4402960 (OR 1.18, 95% CI 1.01-1.38, p = 0.03) in IGF2BP2; rs13266634 (OR 1.24, 95% CI 1.07-1.43, p = 0.005) in SLC30A8; and rs7903146 (OR 1.58, 95% CI 1.03-2.43, p = 0.038) in TCF7L2. The risk alleles of the SNPs rs7756992 and rs7754840 in CDKAL1; rs10811661 in the CDKN2A-CDKN2B region; and rs1111875, rs5015480 and rs7923837 in HHEX were associated with significant decreases in the insulin AUC during a 100 g OGTT performed at the time of diagnosis of GDM.

Conclusions/interpretation: Some of the type 2 diabetes-associated genetic variants that were discovered in the recent GWA studies are also associated with GDM in Koreans.

Similar Articles

Type 2 diabetes: principles of pathogenesis and therapy

Author(s): Stumvoll M, Goldstein BJ, van Haeften TW

Alternative therapies for type 2 diabetes

Author(s): Dey L, Attele AS, Yuan CS

Brussels, Belgium: International Diabetes Federation

Author(s): International Diabetes Federation

Global prevalence of diabetes: estimates for the year 2000 and projections for 2030

Author(s): Wild S, Roglic G, Green A, Sicree R, King H

Prevalence of diabetes in Pakistan

Author(s): Shera AS, Jawad F, Maqsood A

Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53: 2504-2508

Author(s): Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, et al.

A narrative insight to maturity-onset diabetes of the young

Author(s): Kanwal SF, Fazal S, Muhammad Ismail, Nighat Naureen

[MODY type diabetes: overview and recent findings]

Author(s): Ben Khelifa S, Barboura I, Dandana A, Ferchichi S, Miled A

HLA-A, -B, and -DR associations in type 1 diabetes mellitus with onset after age forty

Author(s): Pittman WB, Acton RT, Barger BO, Bell DS, Go RC, et al.

Latent autoimmune diabetes in adults (LADA) should be less latent

Author(s): Fourlanos S, Dotta F, Greenbaum CJ, Palmer JP, Rolandsson O, et al.

Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes

Author(s): Cervin C, Lyssenko V, Bakhtadze E, Lindholm E, Nilsson P, et al.

Genetics of type 2 diabetes

Author(s): Owen KR, McCarthy MI

The emerging genetic architecture of type 2 diabetes

Author(s): Doria A, Patti ME, Kahn CR

Genome-wide association studies in type 2 diabetes

Author(s): McCarthy MI, Zeggini E

Type 2 diabetes: new genes, new understanding

Author(s): Prokopenko I, McCarthy MI, Lindgren CM

Type 2 Diabetes Genetics: Beyond GWAS

Author(s): Sanghera DK, Blackett PR

A genome-wide association study identifies novel risk loci for type 2 diabetes

Author(s): Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al.

Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels

Author(s): Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, et al.

A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants

Author(s): Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al.

A variant in CDKAL1 influences insulin response and risk of type 2 diabetes

Author(s): Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, et al.

A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity

Author(s): Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al.

Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

Author(s): Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, et al.

Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci

Author(s): Saxena R, Elbers CC, Guo Y, Peter I, Gaunt TR, et al.

Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes

Author(s): Silander K, Mohlke KL, Scott LJ, Peck EC, Hollstein P, et al.

Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution

Author(s): Helgason A, Pálsson S, Thorleifsson G, Grant SF, Emilsson V, et al.

Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort

Author(s): van Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A, Strengman E, van Haeften TW, et al.

Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study

Author(s): van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, et al.

Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus

Author(s): Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, et al.

Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus

Author(s): Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, et al.

Inflammatory markers and risk of developing type 2 diabetes in women

Author(s): Hu FB, Meigs JB, Li TY, Rifai N, Manson JE

Therapy with oral antidiabetic drugs: applied pharmacogenetics

Author(s): Holstein A, Seeringer A, Kovacs P

Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action

Author(s): Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, et al.

Pharmacogenetics of Anti-Diabetes Drugs

Author(s): Distefano JK, Watanabe RM

Pharmacogenetics of oral antidiabetic treatment

Author(s): Schroner Z, Javorsky M, Kozarova M, Tkac I

Genetic basis of type 2 diabetes mellitus: implications for therapy

Author(s): Wolford JK, Vozarova de Courten B