Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions

Author(s): Adeghate E

Abstract

Visfatin is a newly discovered adipocyte hormone with a direct relationship between plasma visfatin level and type 2 diabetes mellitus. Visfatin binds to the insulin receptor at a site distinct from that of insulin and causes hypoglycaemia by reducing glucose release from liver cells and stimulating glucose utilization in adipocytes and myocytes. Visfatin is upregulated by hypoxia, inflammation and hyperglycaemia and downregulated by insulin, somatostatin and statins. This hormone is found in the cytoplasm as well as the nucleus of cells and has been identified in many tissues and organs including the brain, kidney, lung, spleen and testis but preferentially expressed in visceral adipose tissue and upregulated in some animal models of obesity. Visceral adipose tissue is regarded to be more pernicious than subcutaneous adipose tissue. Visfatin is an endocrine, autocrine as well as paracrine peptide with many functions including enhancement of cell proliferation, biosynthesis of nicotinamide mono- and dinucleotide and hypoglycaemic effect. Visfatin, also known as a pre-B cell colony-enhancing factor, consists of 491 amino acids (aa) in human, chimpanzee, cattle, pig, rat and mouse, 490 aa in rhesus monkey, 285 aa in sheep, 587 in opossum and 588 aa in canines. Visfatin gene is well preserved during evolution. For example, the canine visfatin protein sequence is 96% and 94% identical to human and rodent visfatin, respectively. Since evidence of a direct link between visfatin genotype and human type 2 diabetes mellitus is still weak, more molecular, physiological and clinical studies are needed to determine the role of visfatin in the etiology and pathogenesis of type 2 diabetes mellitus.

Similar Articles

Visfatin/PBEF and Atherosclerosis-Related Diseases

Author(s): Filippatos TD, Randeva HS, Derdemezis CS, Elisaf MS, Mikhailidis DP

Age of onset and type of diabetes

Author(s): Laakso M, Pyorala K

Sibutramine and L-carnitine compared to sibutramine alone on insulin resistance in diabetic patients

Author(s): Derosa G, Maffioli P, Salvadeo SA, Ferrari I, Gravina A, et al.

Leptin increase is associated with markers of the hemostatic system in obese healthy women

Author(s): Guagnano MT, Romano M, Falco A, Nutini M, Marinopiccoli M, et al.

Effect of exercise training on plasma visfatin and eotaxin levels

Author(s): Choi KM, Kim JH, Cho GJ, Baik SH, Park HS, et al.

Plasma visfatin concentration as a surrogate marker for visceral fat accumulation in obese children

Author(s): Araki S, Dobashi K, Kubo K, Kawagoe R, Yamamoto Y, et al.

An evaluation of visfatin levels in obese subjects

Author(s): Kaminska A, Kopczynska E, Bronisz A, Zmudzinska M, Bielinski M, et al.

Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding

Author(s): Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, et al.

Plasma visfatin concentrations in severely obese subjects are increased after intestinal bypass

Author(s): García-Fuentes E, García-Almeida JM, García-Arnés J, García-Serrano S, Rivas-Marín J, et al.

The visfatin gene is associated with glucose and lipid metabolism in a Chinese population

Author(s): Jian WX, Luo TH, Gu YY, Zhang HL, Zheng S et al.

Serum visfatin increases with progressive beta-cell deterioration

Author(s): López-Bermejo A, Chico-Julià B, Fernàndez-Balsells M, Recasens M, Esteve E, et al.

Adipose tissue as an endocrine organ

Author(s): Kershaw EE, Flier JS

Obesity, hypertension and insulin resistance

Author(s): Sharma AM, Chetty VT

Regulation of adipocytokines and insulin resistance

Author(s): Fasshauer M, Paschke R