10-20 Joules as a neuromolecular quantum in medicinal chemistry: an alternative approach to myriad molecular pathways? Curr Med Chem 17: 3094-3098

Author(s): Persinger MA

Abstract

The myriads of molecular pathways that have been measured to understand the physical bases of neuronal and other cellular functions have exceeded classical comprehension. In the tradition of Bohr and Schrodinger, the hypothesis is developed that molecular pathways are simply epiphenomenal transports of quanta with increments in the order of 10(-20) J. Experimental measurements of photon emissions from cell cultures and the serial steps of phosphorylation in general molecular pathways and transformations in chromophores supported this contention. This discrete value is also associated with action potentials, intersynaptic events, the biophysical bases of membrane potentials, the numbers of action potentials per cell from magnetic energy potential, and the interionic distances around membranes. Consideration of information as discrete increments of energy may allow greater experimental control and external intervention of pathways relevant to medicinal chemistry.

Similar Articles

[Structure of the glial cells in the nervous system of parasitic and free-living flatworms]

Author(s): Biserova NM, Gordeev II, KornevaZhV, Sal'nikova MM

Neuropharmacology and behavior in planarians: translations to mammals

Author(s): Buttarelli FR, Pellicano C, Pontieri FE

Cocaine withdrawal in Planaria

Author(s): Raffa RB, Valdez JM

Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin

Author(s): AdamoAM,Paez PM, Escobar Cabrera OE, Wolfson M, Franco PG, et al.

Learning induces long-term potentiation in the hippocampus

Author(s): Whitlock JR, Heynen AJ, Shuler MG, Bear MF