3D multivoxel proton spectroscopy of human brain using a hybrid of 8th-order Hadamard encoding with 2D chemical shift imaging

Author(s): Gonen O, Murdoch JB, Stoyanova R, Goelman G

Abstract

Multivoxel 3D localized proton spectroscopy using a hybrid of 1D 8th-order transverse Hadamard spectroscopic imaging (HSI) with 2D chemical shift imaging (CSI) is demonstrated in human brain. The spatially selective HSI pulse incorporates naturally into the PRESS sequence (TE = 135 ms), which then both excites an 8 x 8 x 6 cm parallelepiped volume of interest (VOI) and subdivides it into eight slices. The planes of these slices are further partitioned into 16 x 16 voxel arrays using 2D CSI to yield 8 x 8 x 8 voxels within the VOI. Simultaneous 3D coverage yields good voxel signal-to-noise (8, 12, and 22 for choline, creatine, and N-acetylaspartate, respectively) from these 0.75-ml voxels, in approximately 45 min. The high spatial isolation allows localization to within less than 1 cm from the skull without fat contamination.

Similar Articles

Neuroplasticity and functional recovery in multiple sclerosis

Author(s): Tomassini V, Matthews PM, Thompson AJ, Fuglø D, Geurts JJ, et al.

Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI

Author(s): Chiaravalloti N, Hillary F, Ricker J, Christodoulou C, Kalnin A, et al.

Default network activity is a sensitive and specific biomarker of memory in multiple sclerosis

Author(s): Sumowski JF, Wylie GR, Leavitt VM, Chiaravalloti ND, Deluca J

Cortical motor reorganization after a single clinical attack of multiple sclerosis

Author(s): Pantano P, Iannetti GD, Caramia F, Mainero C, Di Legge S, et al.

An investigation of working memory rehearsal in multiple sclerosis using fMRI

Author(s): Hillary FG, Chiaravalloti N, Ricker JH, Steffener J, Bly BM, et al.

Magnetic resonance spectroscopy of memory and frontal brain region in early multiple sclerosis

Author(s): Staffen W, Zauner H, Mair A, Kutzelnigg A, Kapeller P, et al.

Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS

Author(s): Kirov II, Tal A, Babb JS, Herbert J, Gonen O

MR Spectroscopy INdicates Diffuse Multiple Sclerosis Activity During Remission

Author(s): Kirov II, Patil V, Babb JS, Rusenek H, Herbert J, et al.

Proton magnetic resonance spectroscopy in multiple sclerosis

Author(s): Sajja BR, Wolinsky JS, Narayana PA

Guidelines for using proton MR spectroscopy in multicenter clinical MS studies

Author(s): De Stefano N, Filippi M, Miller D, Pouwels PJ, Rovira a, et al.

Magnetic resonance spectroscopy markers of disease progression in multiple sclerosis

Author(s): Llufriu S, Kornak J, Ratiney H, Oh J, Brenneman D, et al.

The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis

Author(s): Lee M, Reddy H, Johansen-Berg H, Pendlebury S, Jenkinson M, et al.

fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis

Author(s): Mainero C, Caramia F, Pozzilli C, Pisani A, Pestalozza I, et al.

Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis

Author(s): Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, et al.

Reduced information processing speed as primummovens for cognitive decline in MS

Author(s): Van Schependom J, D’hooghe MB, Cleynhens K, D’hooge M, Haelewyck M-C, et al.

Relating axonal injury to functional recovery in MS

Author(s): Reddy H, Narayanan S, Matthews PM, Hoge RD, Pike GB, et al.

Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis

Author(s): Inglese M, Li BSY, Rusinek H, Babb JS, Grossman RI, et al.

Incorporating prior knowledge into image registration

Author(s): Ashburner J, Neelin P, Collins DL, Evans A, Friston K

Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm

Author(s): Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek H

MR spectroscopy indicates diffuse multiple sclerosis activity during remission

Author(s): Kirov II, Patil V, Babb JS, Rusinek H, Herbert J, et al.